periodic_convection_imexark4_p100.py 9.92 KB
Newer Older
zhang's avatar
zhang committed
1
2
3
4
5
6
7
from dgpy import *
from math import *
import time, os, sys
import gmshPartition
import numpy as np

exportData=0
zhang's avatar
zhang committed
8
9
outFile=open('periodic_convection_2d_imexark4_poly4_200s.dat','w') 
massFile=open('periodic_convection_2d_imexark4_poly4_200s.mass','w') 
zhang's avatar
zhang committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

#### Physical constants ###
gamma=1.4
Rd=287.0
p0=1.0e5
g=9.80616
Cv=Rd/(gamma-1.0)
Cp=Rd*(1.0+1.0/(gamma-1.0))
###########################
#### Begin and end time ###
Ti=0.0
Tf=200.0
###########################

#Period of the oscillations
period = 100


order=4
dimension=2

model = GModel()
name='line'
if Msg.GetCommSize()>1:
  partStr='_part_%i' % Msg.GetCommSize()
else:
  partStr=''
model.load(name + partStr + '_2d_XY.msh')

#############  for convergence plot################
###################################################
errp=[]
erru=[]
errv=[]
errthetap=[]
errall=[]
stepsizes=[]

groups = dgGroupCollection(model, dimension, order)
groups.splitGroupsByPhysicalTag();

claw = dgEulerAtmLaw(dimension)
####Load reference solution from file###
reloaded =dgDofContainer(groups,claw.getNbFields())
54
reloaded.importIdx("refSolERK"+str(period)+"/subwindow4/subwindow4.idx")
zhang's avatar
zhang committed
55
56
57
58
59
60
61
solution = dgDofContainer(groups, claw.getNbFields())

XYZ = groups.getFunctionCoordinates();

def initialCondition(cmap, FCT,  XYZ) :
    FCT[:,:] = 0

zhang's avatar
zhang committed
62
def boundaryForcing(cmap, FCT, XYZ, time, rhoHs, thetaHs, sol, normals) :
zhang's avatar
zhang committed
63
64
65
66
67
68
69
70
71
72
73
    thetac=5
    xc=500.0
    zc=0.0
    rc=250.0
    currentTime=time[0]
    r=np.sqrt((XYZ[:,0]-xc)**2+(XYZ[:,1]-zc)**2)
    thetaPert=np.empty(thetaHs.shape)
    outR=(r>rc)
    thetaPert[outR]=thetaHs[outR]
    inR=np.invert(outR)
    thetaPert[inR]=thetaHs[inR]+thetac/2.0*(1.0+np.cos(pi*r[inR]/rc))*np.sin(currentTime/period*2.0*pi)**2
zhang's avatar
zhang committed
74
75
76
77
78
    vn = sol[:,1]*normals[:,0] + sol[:,2]*normals[:,1]
    FCT[:,0]=sol[:,0]
    FCT[:,1]=sol[:,1]-2*vn*normals[:,0]
    FCT[:,2]=sol[:,2]-2*vn*normals[:,1]
    FCT[:,3]=(rhoHs+sol[:,0])*thetaPert-rhoHs*thetaHs
zhang's avatar
zhang committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

def thetaHydrostatic(cmap, FCT) :
    FCT[:]=300

def exnerHydrostatic(cmap, FCT,  XYZ, thetaHs) :
    FCT[:]=1.0-g/(Cp*thetaHs)*XYZ[:,1]

def rhoHydrostatic(cmap, FCT, thetaHs, exnerHs) :
    FCT[:]=p0/(Rd*thetaHs)*exnerHs**(Cv/Rd)

def rhoThetaHydrostatic(cmap, FCT, rhoHs, thetaHs) :
    FCT[:]=rhoHs*thetaHs

def getVelocity(cmap, FCT, sol, rhoHs) :
    invrho=1/(rhoHs+sol[:,0])
    FCT[:,0]=sol[:,1]*invrho
    FCT[:,1]=sol[:,2]*invrho
    FCT[:,2]=0

def getRhop(cmap, FCT, sol) :
    FCT[:]=sol[:,0]

def getpp(cmap, FCT, sol, rhoHs, thetaHs) :
    rho=rhoHs+sol[:,0]
    rhoTheta = rhoHs*thetaHs+sol[:,3]
    pHs=p0*(rhoHs*thetaHs*Rd/p0)**gamma
    p=p0*(rhoTheta*Rd/p0)**gamma
    FCT[:]=p-pHs

def getpHs(cmap, FCT, sol, rhoHs, thetaHs) :
    pHs=p0*(rhoHs*thetaHs*Rd/p0)**gamma
    FCT[:]=pHs

def getp(cmap, FCT, sol, rhoHs, thetaHs) :
    rhoTheta = rhoHs*thetaHs+sol[:,3]
    p=p0*(rhoTheta*Rd/p0)**gamma
    FCT[:]=p

def getThetap(cmap, FCT, sol, rhoHs, thetaHs) :
    rho=rhoHs+sol[:,0]
    FCT[:]=(sol[:,3]+(rhoHs*thetaHs))/rho-thetaHs

thetaHsC = functionNumpy(1, thetaHydrostatic,[])
exnerHsC = functionNumpy(1, exnerHydrostatic, [XYZ, thetaHsC])
rhoHsC = functionNumpy(1, rhoHydrostatic, [thetaHsC, exnerHsC])
rhoThetaHsC = functionNumpy(1, rhoThetaHydrostatic, [rhoHsC, thetaHsC])

uv=functionNumpy(3, getVelocity, [solution.getFunction(), rhoHsC])
rhop=functionNumpy(1, getRhop, [solution.getFunction()])
pp=functionNumpy(1, getpp, [solution.getFunction(), rhoHsC, thetaHsC])
thetap=functionNumpy(1, getThetap, [solution.getFunction(), rhoHsC, thetaHsC])

initF=functionNumpy(claw.getNbFields(), initialCondition, [XYZ])
solution.interpolate(initF)

rhoHs = dgDofContainer(groups, 1)
rhoHs.interpolate(rhoHsC)
rhoThetaHs = dgDofContainer(groups, 1)
rhoThetaHs.interpolate(rhoThetaHsC)

claw.setHydrostaticState(rhoHs,rhoThetaHs)
claw.setPhysicalConstants(gamma,Rd,p0,g)

boundaryWall = claw.newBoundaryWall()
timeFunction = function.getTime()
zhang's avatar
zhang committed
144
boundaryForcingF=functionNumpy(4, boundaryForcing, [XYZ, timeFunction, rhoHsC, thetaHsC, function.getSolution(), function.getNormals()])
zhang's avatar
zhang committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
toReplace = VectorFunctorConst([function.getSolution()])
replaceBy = VectorFunctorConst([boundaryForcingF])
boundaryHeated = claw.newOutsideValueBoundaryGeneric("",toReplace,replaceBy)
claw.addBoundaryCondition('bottom_domain', boundaryWall)
claw.addBoundaryCondition('top_domain', boundaryHeated) #top is actually bottom due to the inverse extrusion
claw.addBoundaryCondition('left', boundaryWall)
claw.addBoundaryCondition('right', boundaryWall)

claw.setFilterMode(FILTER_LINEAR)

solution0 = dgDofContainer(groups, claw.getNbFields())
solution0.copy(solution)

#dt = 0.75
#dt = 1.0
#nbSteps = int(round((Tf-Ti)/dt))
ampf = 1.5
nbSteps = 400
dt=(Tf-Ti)/nbSteps

for iruns in range(0,9) :

    petscIm = linearSystemPETScDouble()
    petscIm.setParameter("petscOptions",  "-pc_type lu -ksp_type preonly")
    dofIm = dgDofManager.newDG(groups, claw, petscIm)

zhang's avatar
zhang committed
171
    timeIter = dgIMEXRK(claw, dofIm, IMEX_ARK4)     #timeorder
zhang's avatar
zhang committed
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
    timeIter.getNewton().setVerb(1)     #Verbosity

    solution.copy(solution0)
    #dt=claw.getMinOfTimeSteps(solution)*4.0/(2*timeOrder+1) #infinite because no initial velocity
    if (iruns>0):
        nbSteps = int(nbSteps*ampf)
        dt=(Tf-Ti)/nbSteps
    
    if (Msg.GetCommRank()==0):
        print ("Time step:",dt,"No. of steps:",nbSteps)
    
    # Compute relative error
    def getRefSolSq(cmap, FCT,  refSol) :
        FCT[:,0]=refSol[:,0]**2
        FCT[:,1]=refSol[:,1]**2
        FCT[:,2]=refSol[:,2]**2
        FCT[:,3]=refSol[:,3]**2
    solRefSq=functionNumpy(4, getRefSolSq, [reloaded.getFunction()])

    def getError(cmap, FCT, refSol, compSol) :
        FCT[:,0]=(refSol[:,0]-compSol[:,0])**2
        FCT[:,1]=(refSol[:,1]-compSol[:,1])**2
        FCT[:,2]=(refSol[:,2]-compSol[:,2])**2
        FCT[:,3]=(refSol[:,3]-compSol[:,3])**2
    error = functionNumpy(4, getError, [reloaded.getFunction(), solution.getFunction()])
    integratorError = dgFunctionIntegrator(groups, error)
    intErr = fullMatrixDouble(4,1)
    integratorRefSq = dgFunctionIntegrator(groups, solRefSq)
    intRefSq = fullMatrixDouble(4,1)

    #Export data
    def getExp(cmap, FCT, uv, rhop, thetap, pp) :
        FCT[:,0]=uv[:,0]
        FCT[:,1]=uv[:,1]
        FCT[:,2]=rhop[:]
        FCT[:,3]=thetap[:]
        FCT[:,4]=pp[:]
    Exp=functionNumpy(5, getExp, [uv, rhop, thetap, pp, rhoHsC, thetaHsC])
    nCompExp=[2,1,1,1,]
    namesExp=["uv","rhop","thetap","pp"]

    def densityOne(cmap, FCT, rhoHs, sol):
        FCT[:,0] = rhoHs[:] + sol[:,0]
        FCT[:,1] = 1
    densityOneF=functionNumpy(2, densityOne, [rhoHs.getFunction(), solution.getFunction()])
    massVolIntegrator=dgFunctionIntegrator(groups, densityOneF)
    intMassVol = fullMatrixDouble(2,1)
    massVolIntegrator.compute(intMassVol)

    massInit = intMassVol(0,0)

    prefixFileName = 'output_imexrk'+str(iruns)+'/export'

    # sBV = 2.0/3*(order+1.0)
    # muBV = 0.2
    # filterBV = dgFilterBoydVandeven(groups, "", sBV, muBV, True, False)
    # solutionBV = dgDofContainer(solution);
    # minDiff = fullMatrixDouble(claw.getNbFields(),1)
    # maxDiff = fullMatrixDouble(claw.getNbFields(),1)

    t=Ti
    n_export=0
    timeStart=time.clock();

    start = time.clock()
    for i in range(0,nbSteps):
        if (i%(250*2**iruns) == 0 and exportData):
            solution.exportFunctionVtk(Exp,prefixFileName, t*1000, i,"solution",nCompExp,namesExp)
            if (Msg.GetCommRank()==0):
                print ('\nWriting output',n_export,'at time',t*1000,'ms and step',i,'over',nbSteps)
                print("CFL: %.1e"%(dt/(claw.getMinOfTimeSteps(solution)*4.0)))
            n_export=n_export+1
        #We filter the dof manager and evaluate the max difference with unfiltered solution
        # solutionBV.copy(solution)
        # filterBV.apply(solutionBV)
        # solutionBV.axpy(solution, -1)
        # solutionBV.minmax(minDiff, maxDiff);
        # if (Msg.GetCommRank()==0):
        #     #Print the max difference on density
        #    print("[%.1e]"%max(maxDiff(0,0),-minDiff(0,0)))
        #    print("CFL dt %.1e"%(claw.getMinOfTimeSteps(solution)*4.0/(2*timeOrder+1)))
    ##
        timeIter.iterate(solution, dt, t)
        t=t+dt
      
        #if (Msg.GetCommRank()==0):
        #    sys.stdout.write('.')
        #    sys.stdout.flush()
    if (Msg.GetCommRank()==0):
        print 'dof',solution.getVector().size
        print ('')
        print 'Tf=',t,
    elapsed = (time.clock() - start)
    if (Msg.GetCommRank()==0):
        print ('Time elapsed: ',elapsed,' s')
    if(exportData) :
        solution.exportFunctionVtk(Exp,prefixFileName, Tf*1000, nbSteps,"solution",nCompExp,namesExp)

    integratorError.compute(intErr)
    integratorRefSq.compute(intRefSq)
    errp.append(sqrt(intErr(0,0)/intRefSq(0,0)))
    erru.append(sqrt(intErr(1,0)/intRefSq(1,0)))
    errv.append(sqrt(intErr(2,0)/intRefSq(2,0)))
    errthetap.append(sqrt(intErr(3,0)/intRefSq(3,0)))
    errall.append( sqrt((intErr(0,0)+intErr(1,0)+intErr(2,0)+intErr(3,0))/(intRefSq(0,0)+intRefSq(1,0)+intRefSq(2,0)+intRefSq(3,0))) )
    stepsizes.append(dt)

    massVolIntegrator.compute(intMassVol)
    if (Msg.GetCommRank()==0):
        print "\nError on rhop:",errp[-1],"rhou:",erru[-1],"rhov:", errv[-1],"rhothetap:",errthetap[-1],"all:",errall[-1]
        if(iruns>0):
            print "rhop order:",log(errp[-2]/errp[-1])/log(ampf)
            print "rhou order:",log(erru[-2]/erru[-1])/log(ampf)
            print "rhov order:",log(errv[-2]/errv[-1])/log(ampf)
            print "rhothetap order:",log(errthetap[-2]/errthetap[-1])/log(ampf)
            print "overall order:",log(errall[-2]/errall[-1])/log(ampf)
        outFile.write('{} {} {} {} {} {} {}\n'.format(nbSteps,elapsed,errp[-1],erru[-1],errv[-1],errthetap[-1],errall[-1]))
        print("------------------------\nMassInit %.25e \nMass %.25e \nDiff %e \nRelative diff %e"%(massInit, intMassVol(0,0), intMassVol(0,0)-massInit, (intMassVol(0,0)-massInit)/massInit))
zhang's avatar
zhang committed
290
        massFile.write('{0} {1:.15e} {2:.15e} {3:.15e} \n'.format(nbSteps,massInit,intMassVol(0,0),(intMassVol(0,0)-massInit)/massInit))
zhang's avatar
zhang committed
291
outFile.close()
zhang's avatar
zhang committed
292
massFile.close()
zhang's avatar
zhang committed
293
Msg.Exit(0)