depot.py 4.55 KB
Newer Older
Michel Henry's avatar
Michel Henry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# MigFlow - Copyright (C) <2010-2018>
# <Universite catholique de Louvain (UCL), Belgium
#  Universite de Montpellier, France>
#
# List of the contributors to the development of MigFlow: see AUTHORS file.
# Description and complete License: see LICENSE file.
#
# This program (MigFlow) is free software:
# you can redistribute it and/or modify it under the terms of the GNU Lesser General
# Public License as published by the Free Software Foundation, either version
# 3 of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program (see COPYING and COPYING.LESSER files).  If not,
# see <http://www.gnu.org/licenses/>.

#!/usr/bin/env python
from migflow import fluid as mbfluid
from migflow import time_integration
from migflow import scontact

import numpy as np
import os
import subprocess
import time
import shutil
import random
import unittest

dir_path = os.path.dirname(os.path.realpath(__file__))
os.chdir(dir_path)
# Physical parameters for the drops are the ones presented by Metzger et al. (2007) "Falling clouds of particles in viscous fluids"

outputdir = "outputDepotNP"
if not os.path.isdir(outputdir) :
    os.makedirs(outputdir)

subprocess.call(["gmsh", "-2", "mesh.geo","-clscale","1"])

t = 0
ii = 0


#physical parameters
# g = np.array([0.001,-0.001])
# g =  np.array([0.1,-0.5])                                      # gravity
g =  np.array([0.,-9.81])                                      # gravity
rho = 1000                                      # fluid density
rhop = 1500                                     # particle density
nu = 1e-6                                   # kinematic viscosity
mu = nu*rho                                     # dynamic viscosity
tEnd = 5                                     # final time
r = 1e-3                                       #particle radius
L = 0.4
H = 0.6

#numerical parameters
lcmin = .1                                  # mesh size
dt = 2.5e-3                                       # time step
alpha = 1e-4                                    # stabilization coefficient
epsilon = alpha*lcmin**2 /nu                    # stabilization parametre
print('epsilon',epsilon)

shutil.copy("mesh.msh", outputdir +"/mesh.msh")

p = scontact.ParticleProblem(2)
p.load_msh_boundaries("mesh.msh", ["Bottom", "Top", "Right", "Left"])
for x in np.arange(2*r,L-2*r,2.1*r):
   for y in np.arange(H-0.2,H-r,2.1*r):
       R = r*(1-np.random.random()/4)
       p.add_particle((x+R,y),R,R**2*np.pi*rhop)

p.write_vtk(outputdir,0,0)
print("r = %g, m = %g\n" %  (p.r()[0], p.mass()[0]))
print("RHOP = %g" % rhop)

outf = 5                                       # number of iterations between output files

#Object fluid creation + Boundary condition of the fluid (field 0 is horizontal velocity; field 1 is vertical velocity; field 2 is pressure)
fluid = mbfluid.FluidProblem(2,g,nu*rho,rho,petsc_solver_type="-pc_type lu")
fluid.load_msh("mesh.msh")
#fluid.set_open_boundary("Right",pressure = 0)
#fluid.set_open_boundary("Left", pressure = 0)
fluid.set_wall_boundary("Bottom",velocity=[0,0])
fluid.set_wall_boundary("Top",velocity=[0,0])

# fluid.set_strong_boundary("Bottom",0,0)
# if strong boundary on periodic line, it should be forced on both sides
fluid.set_strong_boundary("Right",2,0)
fluid.set_strong_boundary("Left",2,0)


ii = 0
t = 0

#set initial_condition
fluid.set_particles(p.mass(), p.volume(), p.state(),p.contact_forces())
fluid.export_vtk(outputdir,0,0)

G = np.zeros((p.n_particles(),2))
G[:,1] = p.mass()[:,0]*g[1]

ii = 0
tic = time.time()
while t < tEnd :
    #Fluid solver
    oldstate = np.copy(p.state())
    time_integration.iterate(fluid, p, dt, min_nsub=5, external_particles_forces=G)

    state = p.state()
    state.x[:,0] = np.fmod(state.x[:,0],L)
    ind = np.where(state.x[:,0] <= 0)
    state.x[ind,0] += L
    p.set_state(state)

    fluid.set_particles(p.mass(), p.volume(), oldstate,p.contact_forces(),init=False)
    fluid.set_particles(p.mass(), p.volume(), p.state(),p.contact_forces(),init=False)
    #Output files writting
    t += dt
    if ii %outf == 0 :
        ioutput = int(ii/outf) + 1
        fluid.export_vtk(outputdir, t, ioutput)
        p.write_vtk(outputdir, ioutput, t)
    ii += 1
    print("%i : %.2g/%.2g (cpu %.6g)" % (ii, t, tEnd, time.time() - tic))

s = fluid.solution()
x = fluid.coordinates()