cavity.py 3.31 KB
Newer Older
Jonathan Lambrechts's avatar
Jonathan Lambrechts committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# Marblesbag - Copyright (C) <2010-2018>
# <Universite catholique de Louvain (UCL), Belgium
#  Universite de Montpellier, France>
# 	
# List of the contributors to the development of Marblesbag: see AUTHORS file.
# Description and complete License: see LICENSE file.
# 	
# This program (Marblesbag) is free software: 
# you can redistribute it and/or modify it under the terms of the GNU Lesser General 
# Public License as published by the Free Software Foundation, either version
# 3 of the License, or (at your option) any later version.
# 
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
# 
# You should have received a copy of the GNU Lesser General Public License
# along with this program (see COPYING and COPYING.LESSER files).  If not, 
# see <http://www.gnu.org/licenses/>.

#!/usr/bin/env python
from marblesbag import fluid as fluid
from marblesbag import scontact2

import numpy as np
import os
import time
import shutil
import random
#Physical parameters for the drops are the ones presented by Metzger et al. (2007) "Falling clouds of particles in viscous fluids"


outputdir = "output"
if not os.path.isdir(outputdir) :
    os.makedirs(outputdir)

t = 0
ii = 0


#physical parameters
43
g =  0                                      # gravity
Jonathan Lambrechts's avatar
Jonathan Lambrechts committed
44
45
46
47
48
49
50
rho = 1000                                      # fluid density
nu = 1e-3                                   # kinematic viscosity
mu = nu*rho                                     # dynamic viscosity
tEnd = 100000                                     # final time

#numerical parameters
lcmin = .1                                  # mesh size
51
52
dt = 0.1                                       # time step
alpha = 1e-6                                    # stabilization coefficient
Jonathan Lambrechts's avatar
Jonathan Lambrechts committed
53
54
55
56
57
58
59
60
61
62
63
epsilon = alpha*lcmin**2 /nu                    # stabilization parametre
print('epsilon',epsilon)

shutil.copy("mesh.msh", outputdir +"/mesh.msh")

outf = 1                                       # number of iterations between output files

#Object fluid creation + Boundary condition of the fluid (field 0 is horizontal velocity; field 1 is vertical velocity; field 2 is pressure)
#Format: strong_boundaries = [(Boundary tag, Fluid field, Value)
strong_boundaries = [
        ("Top",0,0,1),
64
65
        ("Top",1,1,0),
        ("PtFix",3,3,0),
Jonathan Lambrechts's avatar
Jonathan Lambrechts committed
66
67
68
69
70
        ("Bottom",0,0,0),
        ("Bottom",1,1,0),
        ("Left",0,0,0),
        ("Left",1,1,0),
        ("Right",0,0,0),
71
        ("Right",1,1,0),
Jonathan Lambrechts's avatar
Jonathan Lambrechts committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
        ]
fluid = fluid.fluid_problem("mesh.msh",g,[nu*rho],[rho],epsilon,strong_boundaries,1)
ii = 0
t = 0

#set initial_condition
x = fluid.coordinates()
s = fluid.solution()
s[:,2] = 1.
#s[:,3] = -rho*g*(1-x[:,1])


fluid.export_vtk(outputdir,0,0)

ii = 0
tic = time.clock()
while ii < 100 : 
    #Fluid solver
    fluid.implicit_euler(dt)
    t += dt
    #Output files writting
    if ii %outf == 0 :
        ioutput = int(ii/outf) + 1
        fluid.export_vtk(outputdir, t, ioutput)
    ii += 1
    print("%i : %.2g/%.2g (cpu %.6g)" % (ii, t, tEnd, time.clock() - tic))
    
s = fluid.solution()
x = fluid.coordinates()
vel = (s[:,0]-1/(20*nu*rho)*x[:,1]*(1-x[:, 1]))**2
print('Error', (vel.sum())**.5)

if (vel.sum())**.5<1.5e-3:
    exit(1)
else:
    exit(0)