cavity.py 4.68 KB
Newer Older
Jonathan Lambrechts's avatar
Jonathan Lambrechts committed
1
# MigFlow - Copyright (C) <2010-2018>
Matthieu Constant's avatar
Matthieu Constant committed
2
3
4
# <Universite catholique de Louvain (UCL), Belgium
#  Universite de Montpellier, France>
# 	
Jonathan Lambrechts's avatar
Jonathan Lambrechts committed
5
# List of the contributors to the development of MigFlow: see AUTHORS file.
Matthieu Constant's avatar
Matthieu Constant committed
6
7
# Description and complete License: see LICENSE file.
# 	
Jonathan Lambrechts's avatar
Jonathan Lambrechts committed
8
# This program (MigFlow) is free software: 
Matthieu Constant's avatar
Matthieu Constant committed
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# you can redistribute it and/or modify it under the terms of the GNU Lesser General 
# Public License as published by the Free Software Foundation, either version
# 3 of the License, or (at your option) any later version.
# 
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
# 
# You should have received a copy of the GNU Lesser General Public License
# along with this program (see COPYING and COPYING.LESSER files).  If not, 
# see <http://www.gnu.org/licenses/>.

#!/usr/bin/env python
Jonathan Lambrechts's avatar
Jonathan Lambrechts committed
23
24
from migflow import fluid as mbfluid
from migflow import scontact2
Matthieu Constant's avatar
Matthieu Constant committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

import numpy as np
import os
import subprocess
import time
import shutil
import random
import unittest
#Physical parameters for the drops are the ones presented by Metzger et al. (2007) "Falling clouds of particles in viscous fluids"


class Poiseuille(unittest.TestCase) :
    def runTest(self) :
        dir_path = os.path.dirname(os.path.realpath(__file__))
        os.chdir(dir_path)
        # Physical parameters for the drops are the ones presented by Metzger et al. (2007) "Falling clouds of particles in viscous fluids"

        outputdir = "output"
        if not os.path.isdir(outputdir) :
            os.makedirs(outputdir)

        subprocess.call(["gmsh", "-2", "mesh.geo","-clscale","2"])

        t = 0
        ii = 0


        #physical parameters
        g =  0                                      # gravity
        rho = 1000                                      # fluid density
        nu = 1e-3                                   # kinematic viscosity
        mu = nu*rho                                     # dynamic viscosity
        tEnd = 100000                                     # final time

        #numerical parameters
        lcmin = .1                                  # mesh size
        dt = 0.1                                       # time step
        alpha = 1e-6                                    # stabilization coefficient
        epsilon = alpha*lcmin**2 /nu                    # stabilization parametre
        print('epsilon',epsilon)

        shutil.copy("mesh.msh", outputdir +"/mesh.msh")
        vUp = 1
        outf = 1                                       # number of iterations between output files

        #Object fluid creation + Boundary condition of the fluid (field 0 is horizontal velocity; field 1 is vertical velocity; field 2 is pressure)
        #Format: strong_boundaries = [(Boundary tag, Fluid field, Value)
72
        fluid = mbfluid.fluid_problem(g,nu*rho,rho)
73
        fluid.load_msh("mesh.msh")
74
75
76
77
78
79
80
81
82
        fluid.set_strong_boundary("Top",0,vUp)
        fluid.set_strong_boundary("Top",1,0.)
        fluid.set_strong_boundary("Top",2,0.)
        fluid.set_strong_boundary("Bottom",0,0.)
        fluid.set_strong_boundary("Bottom",1,0.)
        fluid.set_strong_boundary("Left",0,0.)
        fluid.set_strong_boundary("Left",1,0.)
        fluid.set_strong_boundary("Right",0,0.)
        fluid.set_strong_boundary("Right",1,0.)
83
84
85
86
        fluid.set_weak_boundary("Left","Wall")
        fluid.set_weak_boundary("Bottom","Wall")
        fluid.set_weak_boundary("Top","Wall")
        fluid.set_weak_boundary("Right","Wall")
Matthieu Constant's avatar
Matthieu Constant committed
87
88
89
90
91
92
93
94
95
96
97
98
        ii = 0
        t = 0

        #set initial_condition
        x = fluid.coordinates()
        s = fluid.solution()
        #s[:,3] = -rho*g*(1-x[:,1])


        fluid.export_vtk(outputdir,0,0)

        ii = 0
Matthieu Constant's avatar
Matthieu Constant committed
99
        tic = time.time()
Matthieu Constant's avatar
Matthieu Constant committed
100
101
102
103
104
105
106
107
108
        while ii < 100 : 
            #Fluid solver
            fluid.implicit_euler(dt)
            t += dt
            #Output files writting
            if ii %outf == 0 :
                ioutput = int(ii/outf) + 1
                fluid.export_vtk(outputdir, t, ioutput)
            ii += 1
Matthieu Constant's avatar
Matthieu Constant committed
109
            print("%i : %.2g/%.2g (cpu %.6g)" % (ii, t, tEnd, time.time() - tic))
Matthieu Constant's avatar
Matthieu Constant committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
            
        s = fluid.solution()
        x = fluid.coordinates()

        p = [ 4.40910528e+03, -2.08531786e+04,  4.17388709e+04, -4.57353622e+04, 2.95421532e+04, -1.12048001e+04  ,2.30784236e+03 ,-2.14192853e+02, 1.42357618e+01, -3.69376852e+00, -5.13246798e-04]

        E = 0
        N = 0


        for i in range(len(x)):
            if abs(x[i,0])<0.01:
                E += abs(s[i,0]-np.polyval(p,x[i,1]))
                N += 1

        self.assertLess(E/N,5*vUp/100, "error is too large in Cavity")