Commit 1ad4ac09 authored by Matthieu Constant's avatar Matthieu Constant
Browse files

inject friction

parent d7e3258c
Pipeline #4583 passed with stage
in 1 minute and 50 seconds
L = .136;
H = .25;
l = 2e-3;
lc = 0.01;
f = 10;
Point(1) = {0, H, 0};
Point(2) = {0, 0, 0};
Point(3) = {L/2-l/2,0,0};
Point(4) = {L/2+l/2,0,0};
Point(5) = {L,0,0};
Point(6) = {L,H,0};
Point(9) = {L/2,0,0};
Point(10) = {L/2,H,0};
Line(1) = {1, 2};
Line(2) = {2, 3};
Line(3) = {3, 4};
Line(4) = {4, 5};
Line(5) = {5, 6};
Line(6) = {6, 1};
Line(9) = {9,10};
Line Loop(1) = {1:6};
Plane Surface(1) = {1};
Physical Line("Bottom") = {2,4};
Physical Line("Lateral") = {1,5};
Physical Line("Top") = {6};
Physical Line("Injection") = {3};
Physical Surface("Domain") = {1};
Physical Point("PtFix") = {1};
Mesh.Algorithm = 5;
Merge "lc.pos";
Field[1] = PostView;
Field[1].IView = 0;
Background Field = 1;
Mesh.CharacteristicLengthExtendFromBoundary = 0;
Mesh.CharacteristicLengthFromPoints = 0;
Mesh.MshFileVersion = 2;
# MigFlow - Copyright (C) <2010-2018>
# <Universite catholique de Louvain (UCL), Belgium
# Universite de Montpellier, France>
#
# List of the contributors to the development of MigFlow: see AUTHORS file.
# Description and complete License: see LICENSE file.
#
# This program (MigFlow) is free software:
# you can redistribute it and/or modify it under the terms of the GNU Lesser General
# Public License as published by the Free Software Foundation, either version
# 3 of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program (see COPYING and COPYING.LESSER files). If not,
# see <http://www.gnu.org/licenses/>.
#!/usr/bin/env python
from migflow import fluid
from migflow import scontact
from migflow import lmgc90Interface
from pylmgc90 import pre
import numpy as np
import os
import time
import shutil
import random
outputdir = "outputVid1"
outputdir1 = "outputVid"
if not os.path.isdir(outputdir) :
os.makedirs(outputdir)
t = 0
ii = 0
def genInitialPosition(filename, N, r, lx, ly, rhop) :
p = scontact.ParticleProblem(2)
#Loading of the mesh.msh file specifying physical boundaries name
p.load_msh_boundaries("mesh.msh", ["Top", "Bottom", "Lateral", "Injection"])
#Definition of the points where the grains are located
Ra = 0.9*r
Rb = 1.1*r
radii = pre.granulo_Random(N, Ra, Rb)
[nb_laid_particles, coors] = pre.depositInBox2D(radii,lx,ly)
for i in range(nb_laid_particles):
p.add_particle(coors[2*i:2*i+2], radii[i], radii[i]**2 * np.pi * rhop);
p.write_vtk(filename,0,0)
#physical parameters
alpha = 0*np.pi/4.
g = -9.81*np.cos(alpha) # gravity
print(g)
rho0 = 1.117 # fluid density
rho1 = 785.92
nu0 = 1.57e-5 # kinematic viscosity
nu1 = 1.2e-3/rho1
tEnd = 50 # final time
r = 5e-4/2
N = 100000
lx = .136
ly = .09
rhop = 1059
#numerical parameters
dt = .001 # time step
shutil.copy("mesh.msh", outputdir +"/mesh.msh")
genInitialPosition(outputdir, N, r, lx, ly, rhop)
friction=0.3
lmgc90Interface.scontactTolmgc90(outputdir, 2, 0, friction)
p = lmgc90Interface.ParticleProblem(2)
p.write_vtk(outputdir,0,0)
#p = scontact.ParticleProblem(2)
#p.read_vtk(outputdir,0)
# number of iterations between output files
outf = 25
ii = 0
t = 0
def outerBndV(x) :
#print(0.265258*min((6*t**5-15*t**4+10*t**3),1))
return 0.265258*min((6*t**5-15*t**4+10*t**3),1)
fluid = fluid.FluidProblem(2,g,[nu0*rho0,nu1*rho1],[rho0,rho1],coeff_stab=0.001)
fluid.load_msh("mesh.msh")
fluid.set_weak_boundary("Bottom","Wall")
fluid.set_weak_boundary("Lateral","Wall")
fluid.set_weak_boundary("Top","pressure",[0,1])
fluid.set_weak_boundary("Injection","velocity", [0,outerBndV,1])
fluid.set_particles(p.mass(), p.volume(), p.position(), p.velocity())
#set initial_condition
fluid.solution()[fluid.coordinates()[:,1]>0.18,3] = .5
fluid.solution()[fluid.coordinates()[:,1]>0.19,3] = 1
fluid.export_vtk(outputdir,0,0)
ii = 0
tic = time.time()
fluid.set_particles(p.mass(), p.volume(), p.position(), p.velocity())
while t < tEnd :
#Adaptation of the mesh. Args are minimal mesh radius, maximal mesh radius and number of elements
#Fluid solver
fluid.implicit_euler(dt, newton_max_it=20)
if (ii%50==0):
fluid.adapt_mesh(1e-2,1e-2/5,5000)
forces = fluid.compute_node_force(dt)
#Computation of the new velocities
vn = p.velocity() + forces * dt / p.mass()
vmax = np.max(np.hypot(vn[:, 0], vn[:, 1]))
#number of sub time step
nsub = max(1, int(np.ceil((vmax * dt * 4)/min(p.r()))))
print("NSUB", nsub,"VMAX",vmax, "VMAX * dt", vmax * dt, "r", min(p.r()))
#Contact solver
for i in range(nsub) :
p.iterate(dt/nsub, forces)
t += dt
fluid.set_particles(p.mass(), p.volume(), p.position(), p.velocity())
#Output files writting
if ii %outf == 0 :
ioutput = int(ii/outf) + 1
p.write_vtk(outputdir, ioutput, t)
fluid.export_vtk(outputdir, t, ioutput)
ii += 1
print("%i : %.2g/%.2g (cpu %.6g)" % (ii, t, tEnd, time.time() - tic))
L = .136;
H = .25;
l = 2e-3;
lc = 0.01;
f = 4;
Point(1) = {0, H, 0};
Point(2) = {0, 0, 0};
Point(3) = {L/2-l/2,0,0};
Point(4) = {L/2+l/2,0,0};
Point(5) = {L,0,0};
Point(6) = {L,H,0};
Point(9) = {L/2,0,0};
Point(10) = {L/2,H,0};
Line(1) = {1, 2};
Line(2) = {2, 3};
Line(3) = {3, 4};
Line(4) = {4, 5};
Line(5) = {5, 6};
Line(6) = {6, 1};
Line(9) = {9,10};
Line Loop(1) = {1:6};
Plane Surface(1) = {1};
Physical Line("Bottom") = {2,4};
Physical Line("Lateral") = {1,5};
Physical Line("Top") = {6};
Physical Line("Injection") = {3};
Physical Surface("Domain") = {1};
Physical Point("PtFix") = {1};
Field[1] = Attractor;
Field[1].EdgesList = {9};
Field[1].NNodesByEdge = 200;
Field[2] = Threshold;
Field[2].DistMax = 10*l;
Field[2].DistMin = l;
Field[2].LcMax = lc/f;
Field[2].LcMin = lc/f;
Field[2].IField = 1;
Background Field = 2;
Mesh.MshFileVersion = 2;
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment