Commit 80e38aa5 authored by Matthieu Constant's avatar Matthieu Constant
Browse files

example of reload

parent 06fa3dca
Pipeline #4579 passed with stage
in 2 minutes and 7 seconds
# MigFlow - Copyright (C) <2010-2018>
# <Universite catholique de Louvain (UCL), Belgium
# Universite de Montpellier, France>
#
# List of the contributors to the development of MigFlow: see AUTHORS file.
# Description and complete License: see LICENSE file.
#
# This program (MigFlow) is free software:
# you can redistribute it and/or modify it under the terms of the GNU Lesser General
# Public License as published by the Free Software Foundation, either version
# 3 of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program (see COPYING and COPYING.LESSER files). If not,
# see <http://www.gnu.org/licenses/>.
#!/usr/bin/env python
# TESTCASE DESCRIPTION
# This tescase presents the fall of a cloud made of particles in a viscous fluid (Stokes cloud).
# Physical parameters for the drops are the ones presented by Metzger et al. (2007)
# "Falling clouds of particles in viscous fluids"
from migflow import fluid
from migflow import scontact
import numpy as np
import os
import time
import shutil
import random
def genInitialPosition(filename, r, rout, rhop, compacity) :
"""Set all the particles centre positions and create the particles objects to add in the computing structure
Keyword arguments:
filename -- name of the output file
r -- max radius of the particles
rout -- outer radius of the cloud
rhop -- particles density
compacity -- initial compacity in the cloud
"""
# Particles structure builder
p = scontact.ParticleProblem(2)
# Load mesh.msh file specifying physical boundaries names
p.load_msh_boundaries("mesh.msh", ["Top", "Bottom","Lateral"])
# Space between the particles to obtain the expected compacity
N = compacity*4*rout**2/(np.pi*r**2)
e = 2*rout/(N)**(1./2.)
# Definition of the points where the particles are located
x = np.arange(rout, -rout, -e)
x, y = np.meshgrid(x, x)
R2 = x**2 + y**2
keep = R2 < (rout - r)**2
x = x[keep]
y = y[keep]
for i in range(x.shape[0]) :
# Add particles object with properties defined above
p.add_particle((x[i]+2*random.uniform(-e/2+r,e/2-r), y[i]+2*random.uniform(-e/2+r,e/2-r)), r, r**2 * np.pi * rhop)
# Vertical shift of the particles to the top of the box
p.position()[:, 1] += 0.52
p.write_vtk(filename,0,0)
# Define output directory
outputdir = "output1"
outputrel = "output"
if not os.path.isdir(outputdir) :
os.makedirs(outputdir)
# Physical parameters
g = -9.81 # gravity
rhop = 2450 # particles density
r = 154e-6 # particles radii
compacity = 0.20 # solid volume fraction in the drop
rho = 1030 # fluid density
nu = 1.17/rho # kinematic viscosity
rout = 3.3e-3 # cloud radius
mu = nu*rho # dynamic viscosity
print("RHOP = %g, r = %g, RHO = %g" % (rhop,r,rho))
# Numerical parameters
outf = 1 # number of iterations between output files
dt = 5e-2 # time step
tEnd = 100 # final time
#
# PARTICLE PROBLEM
#
# Reload particles
iReload = 10 # iteration file reloaded
p = scontact.ParticleProblem(2)
p.read_vtk(outputrel,iReload)
# Initial time and iteration
t = 0
ii = 0
jj = 0
tEnd1 = 0.2
#
# FLUID PROBLEM
#
fluid = fluid.FluidProblem(2,g,[nu*rho],[rho])
# Set the mesh geometry for the fluid computation
fluid.set_strong_boundary("Top",2,0)
fluid.set_strong_boundary("Top",1,0)
fluid.set_strong_boundary("Bottom",1,0)
fluid.set_strong_boundary("Lateral",0,0)
fluid.set_weak_boundary("Top","Wall")
fluid.set_weak_boundary("Bottom","Wall")
fluid.set_weak_boundary("Lateral","Wall")
fluid.import_vtk(outputrel+"/fluid_%05d.vtu"%iReload)
fluid.set_particles(p.mass(), p.volume(), p.position(), p.velocity(),reload=1)
ii = (iReload-1)*outf+1
t=ii*dt
#
# COMPUTATION LOOP
#
tic = time.time()
while t < tEnd :
# Fluid solver
fluid.implicit_euler(dt)
# Adaptation of the mesh.
if (ii%15==0 and ii != 0):
fluid.adapt_mesh(5e-3,8e-4,50000)
# Computation of the new velocities
forces = fluid.compute_node_force(dt)
vn = p.velocity() + forces * dt / p.mass()
vmax = np.max(np.hypot(vn[:, 0], vn[:, 1]))
# Number of sub time step
nsub = max(1, int(np.ceil((vmax * dt * 4)/min(p.r()))))
print("NSUB", nsub,"VMAX",vmax, "VMAX * dt", vmax * dt, "r", min(p.r()))
# NLGS iterations
for i in range(nsub) :
p.iterate(dt/nsub, forces)
t += dt
fluid.set_particles(p.mass(), p.volume(), p.position(), p.velocity())
# Output files writting
if ii %outf == 0 :
ioutput = int(ii/outf) + 1
p.write_vtk(outputdir, ioutput, t)
fluid.export_vtk(outputdir, t, ioutput)
ii += 1
print("%i : %.2g/%.2g (cpu %.6g)" % (ii, t, tEnd, time.time() - tic))
\ No newline at end of file
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment