Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
fluidparticles
MigFlow
Commits
f20d6e84
Commit
f20d6e84
authored
Oct 31, 2018
by
Matthieu Constant
Committed by
Jonathan Lambrechts
Nov 14, 2018
Browse files
testcase to implement surface tension in biFluids
parent
54046c12
Pipeline
#4591
passed with stage
in 2 minutes and 3 seconds
Changes
2
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
testcases/liqDrop/liqDrop.py
0 → 100644
View file @
f20d6e84
# MigFlow - Copyright (C) <2010-2018>
# <Universite catholique de Louvain (UCL), Belgium
# Universite de Montpellier, France>
#
# List of the contributors to the development of MigFlow: see AUTHORS file.
# Description and complete License: see LICENSE file.
#
# This program (MigFlow) is free software:
# you can redistribute it and/or modify it under the terms of the GNU Lesser General
# Public License as published by the Free Software Foundation, either version
# 3 of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program (see COPYING and COPYING.LESSER files). If not,
# see <http://www.gnu.org/licenses/>.
#!/usr/bin/env python
from
migflow
import
fluid
from
migflow
import
scontact
import
numpy
as
np
import
os
import
time
import
shutil
import
random
outputdir
=
"output"
if
not
os
.
path
.
isdir
(
outputdir
)
:
os
.
makedirs
(
outputdir
)
t
=
0
ii
=
0
#physical parameters
g
=
-
9.81
rhof
=
1030
# fluid density
rhop
=
2450
# grains density
r
=
154e-6
# grains radii
R
=
3.3e-3
# drop radius
compacity
=
.
20
# solid volume fraction in the drop
phi
=
1
-
compacity
nuf
=
1.17
/
rhof
# kinematic viscosity
muf
=
nuf
*
rhof
# dynamic viscosity
##mixture properties
rhom
=
(
1
-
phi
)
*
rhop
+
phi
*
rhof
#mixture density
num
=
nuf
*
(
1
+
5
/
2
*
phi
)
#Einstein viscosity
print
(
"rhom = %g, num = %g"
%
(
rhom
,
num
))
#numerical parameters
tEnd
=
200
# final time
dt
=
1e-2
# time step
outf
=
10
# number of iterations between output files
def
outerBndV
(
x
)
:
print
(.
4
*
max
(
np
.
sin
(
t
*
np
.
pi
*
2.
/
1
),
0
))
return
0.4
*
max
(
np
.
sin
(
t
*
np
.
pi
*
2.
/
1
),
0
)
fluid
=
fluid
.
FluidProblem
(
2
,
g
,[
num
*
rhom
,
nuf
*
rhof
],[
rhom
,
rhof
])
fluid
.
load_msh
(
"mesh.msh"
)
fluid
.
set_strong_boundary
(
"Top"
,
2
,
0
)
fluid
.
set_strong_boundary
(
"Top"
,
1
,
0
)
fluid
.
set_strong_boundary
(
"Bottom"
,
1
,
0
)
fluid
.
set_strong_boundary
(
"Lateral"
,
0
,
0
)
fluid
.
set_weak_boundary
(
"Bottom"
,
"Wall"
)
fluid
.
set_weak_boundary
(
"Lateral"
,
"Wall"
)
fluid
.
set_weak_boundary
(
"Top"
,
"Wall"
)
ii
=
0
t
=
0
s
=
fluid
.
solution
()
x
=
fluid
.
coordinates
()
for
i
in
range
(
len
(
x
[:,
0
])):
if
(
x
[
i
,
0
])
**
2
+
(
x
[
i
,
1
]
-
.
52
)
**
2
<
R
**
2
:
s
[
i
,
3
]
=
1
else
:
s
[
i
,
3
]
=
0
#set initial_condition
fluid
.
export_vtk
(
outputdir
,
0
,
0
)
ii
=
0
tic
=
time
.
time
()
while
t
<
tEnd
:
#Fluid solver
fluid
.
implicit_euler
(
dt
)
if
(
ii
%
11
==
0
and
ii
!=
0
):
fluid
.
adapt_mesh
(
1e-3
,
1e-4
,
10000
)
t
+=
dt
#Output files writting
if
ii
%
outf
==
0
:
ioutput
=
int
(
ii
/
outf
)
+
1
fluid
.
export_vtk
(
outputdir
,
t
,
ioutput
)
ii
+=
1
print
(
"%i : %.2g/%.2g (cpu %.6g)"
%
(
ii
,
t
,
tEnd
,
time
.
time
()
-
tic
))
testcases/liqDrop/mesh.geo
0 → 100644
View file @
f20d6e84
L = 0.05;
H = 0.6;
y = 0;
lc = 0.001;
Point(1) = {-L, H, 0};
Point(2) = {-L, -H, 0};
Point(3) = {L, -H, 0};
Point(4) = {L, H, 0};
Line(1) = {1, 2};
Line(2) = {2, 3};
Line(3) = {3, 4};
Line(4) = {4, 1};
Point(5) = {0,0.52,0};
Line Loop(1) = {1:4};
Plane Surface(1) = {1};
Physical Line("Bottom") = {2};
Physical Line("Lateral") = {1,3};
Physical Line("Top") = {4};
Physical Surface("Domain") = {1};
Physical Point("PtFix") = {1};
Field[1] = Attractor;
Field[1].NodesList = {5};
Field[2] = Threshold;
Field[2].DistMax = 0.08;
Field[2].DistMin = 0.02;
Field[2].LcMax = 0.008;
Field[2].LcMin = 0.001;
Field[2].IField = 1;
Background Field = 2;
Mesh.CharacteristicLengthFromPoints = 0;
Mesh.CharacteristicLengthExtendFromBoundary = 0;
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment