blas.f 37.6 KB
Newer Older
François Trigaux's avatar
François Trigaux committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
      subroutine  dcopy(n,dx,incx,dy,incy)
c
c     copies a vector, x, to a vector, y.
c     uses unrolled loops for increments equal to one.
c     jack dongarra, linpack, 3/11/78.
c
      double precision dx(1),dy(1)
      integer i,incx,incy,ix,iy,m,mp1,n
c
      if(n.le.0)return
      if(incx.eq.1.and.incy.eq.1)go to 20
c
c        code for unequal increments or equal increments
c          not equal to 1
c
      ix = 1
      iy = 1
      if(incx.lt.0)ix = (-n+1)*incx + 1
      if(incy.lt.0)iy = (-n+1)*incy + 1
      do 10 i = 1,n
        dy(iy) = dx(ix)
        ix = ix + incx
        iy = iy + incy
   10 continue
      return
c
c        code for both increments equal to 1
c
c
c        clean-up loop
c
   20 m = mod(n,7)
      if( m .eq. 0 ) go to 40
      do 30 i = 1,m
        dy(i) = dx(i)
   30 continue
      if( n .lt. 7 ) return
   40 mp1 = m + 1
      do 50 i = mp1,n,7
        dy(i) = dx(i)
        dy(i + 1) = dx(i + 1)
        dy(i + 2) = dx(i + 2)
        dy(i + 3) = dx(i + 3)
        dy(i + 4) = dx(i + 4)
        dy(i + 5) = dx(i + 5)
        dy(i + 6) = dx(i + 6)
   50 continue
      return
      end


      double precision function ddot(n,dx,incx,dy,incy)
c
c     forms the dot product of two vectors.
c     uses unrolled loops for increments equal to one.
c     jack dongarra, linpack, 3/11/78.
c
      double precision dx(1),dy(1),dtemp
      integer i,incx,incy,ix,iy,m,mp1,n
c
      ddot = 0.0d0
      dtemp = 0.0d0
      if(n.le.0)return
      if(incx.eq.1.and.incy.eq.1)go to 20
c
c        code for unequal increments or equal increments
c          not equal to 1
c
      ix = 1
      iy = 1
      if(incx.lt.0)ix = (-n+1)*incx + 1
      if(incy.lt.0)iy = (-n+1)*incy + 1
      do 10 i = 1,n
        dtemp = dtemp + dx(ix)*dy(iy)
        ix = ix + incx
        iy = iy + incy
   10 continue
      ddot = dtemp
      return
c
c        code for both increments equal to 1
c
c
c        clean-up loop
c
   20 m = mod(n,5)
      if( m .eq. 0 ) go to 40
      do 30 i = 1,m
        dtemp = dtemp + dx(i)*dy(i)
   30 continue
      if( n .lt. 5 ) go to 60
   40 mp1 = m + 1
      do 50 i = mp1,n,5
        dtemp = dtemp + dx(i)*dy(i) + dx(i + 1)*dy(i + 1) +
     *   dx(i + 2)*dy(i + 2) + dx(i + 3)*dy(i + 3) + dx(i + 4)*dy(i + 4)
   50 continue
   60 ddot = dtemp
      return
      end


      DOUBLE PRECISION FUNCTION DNRM2(N,X,INCX)
*     .. Scalar Arguments ..
      INTEGER INCX,N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION X(*)
*     ..
*
*  Purpose
*  =======
*
*  DNRM2 returns the euclidean norm of a vector via the function
*  name, so that
*
*     DNRM2 := sqrt( x'*x )
*
*
*  -- This version written on 25-October-1982.
*     Modified on 14-October-1993 to inline the call to DLASSQ.
*     Sven Hammarling, Nag Ltd.
*
*
*     .. Parameters ..
      DOUBLE PRECISION ONE,ZERO
      PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
*     ..
*     .. Local Scalars ..
      DOUBLE PRECISION ABSXI,NORM,SCALE,SSQ
      INTEGER IX
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC ABS,SQRT
*     ..
      IF (N.LT.1 .OR. INCX.LT.1) THEN
          NORM = ZERO
      ELSE IF (N.EQ.1) THEN
          NORM = ABS(X(1))
      ELSE
          SCALE = ZERO
          SSQ = ONE
*        The following loop is equivalent to this call to the LAPACK
*        auxiliary routine:
*        CALL DLASSQ( N, X, INCX, SCALE, SSQ )
*
          DO 10 IX = 1,1 + (N-1)*INCX,INCX
              IF (X(IX).NE.ZERO) THEN
                  ABSXI = ABS(X(IX))
                  IF (SCALE.LT.ABSXI) THEN
                      SSQ = ONE + SSQ* (SCALE/ABSXI)**2
                      SCALE = ABSXI
                  ELSE
                      SSQ = SSQ + (ABSXI/SCALE)**2
                  END IF
              END IF
   10     CONTINUE
          NORM = SCALE*SQRT(SSQ)
      END IF
*
      DNRM2 = NORM
      RETURN
*
*     End of DNRM2.
*
      END


      SUBROUTINE DGEMV ( TRANS, M, N, ALPHA, A, LDA, X, INCX,
     $                   BETA, Y, INCY )
*     .. Scalar Arguments ..
      DOUBLE PRECISION   ALPHA, BETA
      INTEGER            INCX, INCY, LDA, M, N
      CHARACTER*1        TRANS
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), X( * ), Y( * )
*     ..
*
*  Purpose
*  =======
*
*  DGEMV  performs one of the matrix-vector operations
*
*     y := alpha*A*x + beta*y,   or   y := alpha*A'*x + beta*y,
*
*  where alpha and beta are scalars, x and y are vectors and A is an
*  m by n matrix.
*
*  Parameters
*  ==========
*
*  TRANS  - CHARACTER*1.
*           On entry, TRANS specifies the operation to be performed as
*           follows:
*
*              TRANS = 'N' or 'n'   y := alpha*A*x + beta*y.
*
*              TRANS = 'T' or 't'   y := alpha*A'*x + beta*y.
*
*              TRANS = 'C' or 'c'   y := alpha*A'*x + beta*y.
*
*           Unchanged on exit.
*
*  M      - INTEGER.
*           On entry, M specifies the number of rows of the matrix A.
*           M must be at least zero.
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry, N specifies the number of columns of the matrix A.
*           N must be at least zero.
*           Unchanged on exit.
*
*  ALPHA  - DOUBLE PRECISION.
*           On entry, ALPHA specifies the scalar alpha.
*           Unchanged on exit.
*
*  A      - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
*           Before entry, the leading m by n part of the array A must
*           contain the matrix of coefficients.
*           Unchanged on exit.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in the calling (sub) program. LDA must be at least
*           max( 1, m ).
*           Unchanged on exit.
*
*  X      - DOUBLE PRECISION array of DIMENSION at least
*           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
*           and at least
*           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
*           Before entry, the incremented array X must contain the
*           vector x.
*           Unchanged on exit.
*
*  INCX   - INTEGER.
*           On entry, INCX specifies the increment for the elements of
*           X. INCX must not be zero.
*           Unchanged on exit.
*
*  BETA   - DOUBLE PRECISION.
*           On entry, BETA specifies the scalar beta. When BETA is
*           supplied as zero then Y need not be set on input.
*           Unchanged on exit.
*
*  Y      - DOUBLE PRECISION array of DIMENSION at least
*           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
*           and at least
*           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
*           Before entry with BETA non-zero, the incremented array Y
*           must contain the vector y. On exit, Y is overwritten by the
*           updated vector y.
*
*  INCY   - INTEGER.
*           On entry, INCY specifies the increment for the elements of
*           Y. INCY must not be zero.
*           Unchanged on exit.
*
*
*  Level 2 Blas routine.
*
*  -- Written on 22-October-1986.
*     Jack Dongarra, Argonne National Lab.
*     Jeremy Du Croz, Nag Central Office.
*     Sven Hammarling, Nag Central Office.
*     Richard Hanson, Sandia National Labs.
*
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE         , ZERO
      PARAMETER        ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     .. Local Scalars ..
      DOUBLE PRECISION   TEMP
      INTEGER            I, INFO, IX, IY, J, JX, JY, KX, KY, LENX, LENY
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      IF     ( .NOT.LSAME( TRANS, 'N' ).AND.
     $         .NOT.LSAME( TRANS, 'T' ).AND.
     $         .NOT.LSAME( TRANS, 'C' )      )THEN
         INFO = 1
      ELSE IF( M.LT.0 )THEN
         INFO = 2
      ELSE IF( N.LT.0 )THEN
         INFO = 3
      ELSE IF( LDA.LT.MAX( 1, M ) )THEN
         INFO = 6
      ELSE IF( INCX.EQ.0 )THEN
         INFO = 8
      ELSE IF( INCY.EQ.0 )THEN
         INFO = 11
      END IF
      IF( INFO.NE.0 )THEN
         CALL XERBLA( 'DGEMV ', INFO )
         RETURN
      END IF
*
*     Quick return if possible.
*
      IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
     $    ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
     $   RETURN
*
*     Set  LENX  and  LENY, the lengths of the vectors x and y, and set
*     up the start points in  X  and  Y.
*
      IF( LSAME( TRANS, 'N' ) )THEN
         LENX = N
         LENY = M
      ELSE
         LENX = M
         LENY = N
      END IF
      IF( INCX.GT.0 )THEN
         KX = 1
      ELSE
         KX = 1 - ( LENX - 1 )*INCX
      END IF
      IF( INCY.GT.0 )THEN
         KY = 1
      ELSE
         KY = 1 - ( LENY - 1 )*INCY
      END IF
*
*     Start the operations. In this version the elements of A are
*     accessed sequentially with one pass through A.
*
*     First form  y := beta*y.
*
      IF( BETA.NE.ONE )THEN
         IF( INCY.EQ.1 )THEN
            IF( BETA.EQ.ZERO )THEN
               DO 10, I = 1, LENY
                  Y( I ) = ZERO
   10          CONTINUE
            ELSE
               DO 20, I = 1, LENY
                  Y( I ) = BETA*Y( I )
   20          CONTINUE
            END IF
         ELSE
            IY = KY
            IF( BETA.EQ.ZERO )THEN
               DO 30, I = 1, LENY
                  Y( IY ) = ZERO
                  IY      = IY   + INCY
   30          CONTINUE
            ELSE
               DO 40, I = 1, LENY
                  Y( IY ) = BETA*Y( IY )
                  IY      = IY           + INCY
   40          CONTINUE
            END IF
         END IF
      END IF
      IF( ALPHA.EQ.ZERO )
     $   RETURN
      IF( LSAME( TRANS, 'N' ) )THEN
*
*        Form  y := alpha*A*x + y.
*
         JX = KX
         IF( INCY.EQ.1 )THEN
            DO 60, J = 1, N
               IF( X( JX ).NE.ZERO )THEN
                  TEMP = ALPHA*X( JX )
                  DO 50, I = 1, M
                     Y( I ) = Y( I ) + TEMP*A( I, J )
   50             CONTINUE
               END IF
               JX = JX + INCX
   60       CONTINUE
         ELSE
            DO 80, J = 1, N
               IF( X( JX ).NE.ZERO )THEN
                  TEMP = ALPHA*X( JX )
                  IY   = KY
                  DO 70, I = 1, M
                     Y( IY ) = Y( IY ) + TEMP*A( I, J )
                     IY      = IY      + INCY
   70             CONTINUE
               END IF
               JX = JX + INCX
   80       CONTINUE
         END IF
      ELSE
*
*        Form  y := alpha*A'*x + y.
*
         JY = KY
         IF( INCX.EQ.1 )THEN
            DO 100, J = 1, N
               TEMP = ZERO
               DO 90, I = 1, M
                  TEMP = TEMP + A( I, J )*X( I )
   90          CONTINUE
               Y( JY ) = Y( JY ) + ALPHA*TEMP
               JY      = JY      + INCY
  100       CONTINUE
         ELSE
            DO 120, J = 1, N
               TEMP = ZERO
               IX   = KX
               DO 110, I = 1, M
                  TEMP = TEMP + A( I, J )*X( IX )
                  IX   = IX   + INCX
  110          CONTINUE
               Y( JY ) = Y( JY ) + ALPHA*TEMP
               JY      = JY      + INCY
  120       CONTINUE
         END IF
      END IF
*
      RETURN
*
*     End of DGEMV .
*
      END


      subroutine daxpy(n,da,dx,incx,dy,incy)
c
c     constant times a vector plus a vector.
c     uses unrolled loops for increments equal to one.
c     jack dongarra, linpack, 3/11/78.
c
      double precision dx(1),dy(1),da
      integer i,incx,incy,ix,iy,m,mp1,n
c
      if(n.le.0)return
      if (da .eq. 0.0d0) return
      if(incx.eq.1.and.incy.eq.1)go to 20
c
c        code for unequal increments or equal increments
c          not equal to 1
c
      ix = 1
      iy = 1
      if(incx.lt.0)ix = (-n+1)*incx + 1
      if(incy.lt.0)iy = (-n+1)*incy + 1
      do 10 i = 1,n
        dy(iy) = dy(iy) + da*dx(ix)
        ix = ix + incx
        iy = iy + incy
   10 continue
      return
c
c        code for both increments equal to 1
c
c
c        clean-up loop
c
   20 m = mod(n,4)
      if( m .eq. 0 ) go to 40
      do 30 i = 1,m
        dy(i) = dy(i) + da*dx(i)
   30 continue
      if( n .lt. 4 ) return
   40 mp1 = m + 1
      do 50 i = mp1,n,4
        dy(i) = dy(i) + da*dx(i)
        dy(i + 1) = dy(i + 1) + da*dx(i + 1)
        dy(i + 2) = dy(i + 2) + da*dx(i + 2)
        dy(i + 3) = dy(i + 3) + da*dx(i + 3)
   50 continue
      return
      end

      subroutine  dscal(n,da,dx,incx)
c
c     scales a vector by a constant.
c     uses unrolled loops for increment equal to one.
c     jack dongarra, linpack, 3/11/78.
c     modified to correct problem with negative increment, 8/21/90.
c
      double precision da,dx(1)
      integer i,incx,ix,m,mp1,n
c
      if(n.le.0)return
      if(incx.eq.1)go to 20
c
c        code for increment not equal to 1
c
      ix = 1
      if(incx.lt.0)ix = (-n+1)*incx + 1
      do 10 i = 1,n
        dx(ix) = da*dx(ix)
        ix = ix + incx
   10 continue
      return
c
c        code for increment equal to 1
c
c
c        clean-up loop
c
   20 m = mod(n,5)
      if( m .eq. 0 ) go to 40
      do 30 i = 1,m
        dx(i) = da*dx(i)
   30 continue
      if( n .lt. 5 ) return
   40 mp1 = m + 1
      do 50 i = mp1,n,5
        dx(i) = da*dx(i)
        dx(i + 1) = da*dx(i + 1)
        dx(i + 2) = da*dx(i + 2)
        dx(i + 3) = da*dx(i + 3)
        dx(i + 4) = da*dx(i + 4)
   50 continue
      return
      end


      subroutine  drot (n,dx,incx,dy,incy,c,s)
c
c     applies a plane rotation.
c     jack dongarra, linpack, 3/11/78.
c
      double precision dx(1),dy(1),dtemp,c,s
      integer i,incx,incy,ix,iy,n
c
      if(n.le.0)return
      if(incx.eq.1.and.incy.eq.1)go to 20
c
c       code for unequal increments or equal increments not equal
c         to 1
c
      ix = 1
      iy = 1
      if(incx.lt.0)ix = (-n+1)*incx + 1
      if(incy.lt.0)iy = (-n+1)*incy + 1
      do 10 i = 1,n
        dtemp = c*dx(ix) + s*dy(iy)
        dy(iy) = c*dy(iy) - s*dx(ix)
        dx(ix) = dtemp
        ix = ix + incx
        iy = iy + incy
   10 continue
      return
c
c       code for both increments equal to 1
c
   20 do 30 i = 1,n
        dtemp = c*dx(i) + s*dy(i)
        dy(i) = c*dy(i) - s*dx(i)
        dx(i) = dtemp
   30 continue
      return
      end

      SUBROUTINE DGER  ( M, N, ALPHA, X, INCX, Y, INCY, A, LDA )
*     .. Scalar Arguments ..
      DOUBLE PRECISION   ALPHA
      INTEGER            INCX, INCY, LDA, M, N
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), X( * ), Y( * )
*     ..
*
*  Purpose
*  =======
*
*  DGER   performs the rank 1 operation
*
*     A := alpha*x*y' + A,
*
*  where alpha is a scalar, x is an m element vector, y is an n element
*  vector and A is an m by n matrix.
*
*  Parameters
*  ==========
*
*  M      - INTEGER.
*           On entry, M specifies the number of rows of the matrix A.
*           M must be at least zero.
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry, N specifies the number of columns of the matrix A.
*           N must be at least zero.
*           Unchanged on exit.
*
*  ALPHA  - DOUBLE PRECISION.
*           On entry, ALPHA specifies the scalar alpha.
*           Unchanged on exit.
*
*  X      - DOUBLE PRECISION array of dimension at least
*           ( 1 + ( m - 1 )*abs( INCX ) ).
*           Before entry, the incremented array X must contain the m
*           element vector x.
*           Unchanged on exit.
*
*  INCX   - INTEGER.
*           On entry, INCX specifies the increment for the elements of
*           X. INCX must not be zero.
*           Unchanged on exit.
*
*  Y      - DOUBLE PRECISION array of dimension at least
*           ( 1 + ( n - 1 )*abs( INCY ) ).
*           Before entry, the incremented array Y must contain the n
*           element vector y.
*           Unchanged on exit.
*
*  INCY   - INTEGER.
*           On entry, INCY specifies the increment for the elements of
*           Y. INCY must not be zero.
*           Unchanged on exit.
*
*  A      - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
*           Before entry, the leading m by n part of the array A must
*           contain the matrix of coefficients. On exit, A is
*           overwritten by the updated matrix.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in the calling (sub) program. LDA must be at least
*           max( 1, m ).
*           Unchanged on exit.
*
*
*  Level 2 Blas routine.
*
*  -- Written on 22-October-1986.
*     Jack Dongarra, Argonne National Lab.
*     Jeremy Du Croz, Nag Central Office.
*     Sven Hammarling, Nag Central Office.
*     Richard Hanson, Sandia National Labs.
*
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO
      PARAMETER        ( ZERO = 0.0D+0 )
*     .. Local Scalars ..
      DOUBLE PRECISION   TEMP
      INTEGER            I, INFO, IX, J, JY, KX
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      IF     ( M.LT.0 )THEN
         INFO = 1
      ELSE IF( N.LT.0 )THEN
         INFO = 2
      ELSE IF( INCX.EQ.0 )THEN
         INFO = 5
      ELSE IF( INCY.EQ.0 )THEN
         INFO = 7
      ELSE IF( LDA.LT.MAX( 1, M ) )THEN
         INFO = 9
      END IF
      IF( INFO.NE.0 )THEN
         CALL XERBLA( 'DGER  ', INFO )
         RETURN
      END IF
*
*     Quick return if possible.
*
      IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.( ALPHA.EQ.ZERO ) )
     $   RETURN
*
*     Start the operations. In this version the elements of A are
*     accessed sequentially with one pass through A.
*
      IF( INCY.GT.0 )THEN
         JY = 1
      ELSE
         JY = 1 - ( N - 1 )*INCY
      END IF
      IF( INCX.EQ.1 )THEN
         DO 20, J = 1, N
            IF( Y( JY ).NE.ZERO )THEN
               TEMP = ALPHA*Y( JY )
               DO 10, I = 1, M
                  A( I, J ) = A( I, J ) + X( I )*TEMP
   10          CONTINUE
            END IF
            JY = JY + INCY
   20    CONTINUE
      ELSE
         IF( INCX.GT.0 )THEN
            KX = 1
         ELSE
            KX = 1 - ( M - 1 )*INCX
         END IF
         DO 40, J = 1, N
            IF( Y( JY ).NE.ZERO )THEN
               TEMP = ALPHA*Y( JY )
               IX   = KX
               DO 30, I = 1, M
                  A( I, J ) = A( I, J ) + X( IX )*TEMP
                  IX        = IX        + INCX
   30          CONTINUE
            END IF
            JY = JY + INCY
   40    CONTINUE
      END IF
*
      RETURN
*
*     End of DGER  .
*
      END


      integer function idamax(n,dx,incx)
c
c     finds the index of element having max. absolute value.
c     jack dongarra, linpack, 3/11/78.
c     modified to correct problem with negative increment, 8/21/90.
c
      double precision dx(1),dmax
      integer i,incx,ix,n
c
      idamax = 0
      if( n .lt. 1 ) return
      idamax = 1
      if(n.eq.1)return
      if(incx.eq.1)go to 20
c
c        code for increment not equal to 1
c
      ix = 1
      if(incx.lt.0)ix = (-n+1)*incx + 1
      dmax = dabs(dx(ix))
      ix = ix + incx
      do 10 i = 2,n
         if(dabs(dx(ix)).le.dmax) go to 5
         idamax = i
         dmax = dabs(dx(ix))
    5    ix = ix + incx
   10 continue
      return
c
c        code for increment equal to 1
c
   20 dmax = dabs(dx(1))
      do 30 i = 2,n
         if(dabs(dx(i)).le.dmax) go to 30
         idamax = i
         dmax = dabs(dx(i))
   30 continue
      return
      end


      SUBROUTINE DTRMM ( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA,
     $                   B, LDB )
*     .. Scalar Arguments ..
      CHARACTER*1        SIDE, UPLO, TRANSA, DIAG
      INTEGER            M, N, LDA, LDB
      DOUBLE PRECISION   ALPHA
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * )
*     ..
*
*  Purpose
*  =======
*
*  DTRMM  performs one of the matrix-matrix operations
*
*     B := alpha*op( A )*B,   or   B := alpha*B*op( A ),
*
*  where  alpha  is a scalar,  B  is an m by n matrix,  A  is a unit, or
*  non-unit,  upper or lower triangular matrix  and  op( A )  is one  of
*
*     op( A ) = A   or   op( A ) = A'.
*
*  Parameters
*  ==========
*
*  SIDE   - CHARACTER*1.
*           On entry,  SIDE specifies whether  op( A ) multiplies B from
*           the left or right as follows:
*
*              SIDE = 'L' or 'l'   B := alpha*op( A )*B.
*
*              SIDE = 'R' or 'r'   B := alpha*B*op( A ).
*
*           Unchanged on exit.
*
*  UPLO   - CHARACTER*1.
*           On entry, UPLO specifies whether the matrix A is an upper or
*           lower triangular matrix as follows:
*
*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
*
*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
*
*           Unchanged on exit.
*
*  TRANSA - CHARACTER*1.
*           On entry, TRANSA specifies the form of op( A ) to be used in
*           the matrix multiplication as follows:
*
*              TRANSA = 'N' or 'n'   op( A ) = A.
*
*              TRANSA = 'T' or 't'   op( A ) = A'.
*
*              TRANSA = 'C' or 'c'   op( A ) = A'.
*
*           Unchanged on exit.
*
*  DIAG   - CHARACTER*1.
*           On entry, DIAG specifies whether or not A is unit triangular
*           as follows:
*
*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
*
*              DIAG = 'N' or 'n'   A is not assumed to be unit
*                                  triangular.
*
*           Unchanged on exit.
*
*  M      - INTEGER.
*           On entry, M specifies the number of rows of B. M must be at
*           least zero.
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry, N specifies the number of columns of B.  N must be
*           at least zero.
*           Unchanged on exit.
*
*  ALPHA  - DOUBLE PRECISION.
*           On entry,  ALPHA specifies the scalar  alpha. When  alpha is
*           zero then  A is not referenced and  B need not be set before
*           entry.
*           Unchanged on exit.
*
*  A      - DOUBLE PRECISION array of DIMENSION ( LDA, k ), where k is m
*           when  SIDE = 'L' or 'l'  and is  n  when  SIDE = 'R' or 'r'.
*           Before entry  with  UPLO = 'U' or 'u',  the  leading  k by k
*           upper triangular part of the array  A must contain the upper
*           triangular matrix  and the strictly lower triangular part of
*           A is not referenced.
*           Before entry  with  UPLO = 'L' or 'l',  the  leading  k by k
*           lower triangular part of the array  A must contain the lower
*           triangular matrix  and the strictly upper triangular part of
*           A is not referenced.
*           Note that when  DIAG = 'U' or 'u',  the diagonal elements of
*           A  are not referenced either,  but are assumed to be  unity.
*           Unchanged on exit.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then
*           LDA  must be at least  max( 1, m ),  when  SIDE = 'R' or 'r'
*           then LDA must be at least max( 1, n ).
*           Unchanged on exit.
*
*  B      - DOUBLE PRECISION array of DIMENSION ( LDB, n ).
*           Before entry,  the leading  m by n part of the array  B must
*           contain the matrix  B,  and  on exit  is overwritten  by the
*           transformed matrix.
*
*  LDB    - INTEGER.
*           On entry, LDB specifies the first dimension of B as declared
*           in  the  calling  (sub)  program.   LDB  must  be  at  least
*           max( 1, m ).
*           Unchanged on exit.
*
*
*  Level 3 Blas routine.
*
*  -- Written on 8-February-1989.
*     Jack Dongarra, Argonne National Laboratory.
*     Iain Duff, AERE Harwell.
*     Jeremy Du Croz, Numerical Algorithms Group Ltd.
*     Sven Hammarling, Numerical Algorithms Group Ltd.
*
*
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     .. Local Scalars ..
      LOGICAL            LSIDE, NOUNIT, UPPER
      INTEGER            I, INFO, J, K, NROWA
      DOUBLE PRECISION   TEMP
*     .. Parameters ..
      DOUBLE PRECISION   ONE         , ZERO
      PARAMETER        ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      LSIDE  = LSAME( SIDE  , 'L' )
      IF( LSIDE )THEN
         NROWA = M
      ELSE
         NROWA = N
      END IF
      NOUNIT = LSAME( DIAG  , 'N' )
      UPPER  = LSAME( UPLO  , 'U' )
*
      INFO   = 0
      IF(      ( .NOT.LSIDE                ).AND.
     $         ( .NOT.LSAME( SIDE  , 'R' ) )      )THEN
         INFO = 1
      ELSE IF( ( .NOT.UPPER                ).AND.
     $         ( .NOT.LSAME( UPLO  , 'L' ) )      )THEN
         INFO = 2
      ELSE IF( ( .NOT.LSAME( TRANSA, 'N' ) ).AND.
     $         ( .NOT.LSAME( TRANSA, 'T' ) ).AND.
     $         ( .NOT.LSAME( TRANSA, 'C' ) )      )THEN
         INFO = 3
      ELSE IF( ( .NOT.LSAME( DIAG  , 'U' ) ).AND.
     $         ( .NOT.LSAME( DIAG  , 'N' ) )      )THEN
         INFO = 4
      ELSE IF( M  .LT.0               )THEN
         INFO = 5
      ELSE IF( N  .LT.0               )THEN
         INFO = 6
      ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
         INFO = 9
      ELSE IF( LDB.LT.MAX( 1, M     ) )THEN
         INFO = 11
      END IF
      IF( INFO.NE.0 )THEN
         CALL XERBLA( 'DTRMM ', INFO )
         RETURN
      END IF
*
*     Quick return if possible.
*
      IF( N.EQ.0 )
     $   RETURN
*
*     And when  alpha.eq.zero.
*
      IF( ALPHA.EQ.ZERO )THEN
         DO 20, J = 1, N
            DO 10, I = 1, M
               B( I, J ) = ZERO
   10       CONTINUE
   20    CONTINUE
         RETURN
      END IF
*
*     Start the operations.
*
      IF( LSIDE )THEN
         IF( LSAME( TRANSA, 'N' ) )THEN
*
*           Form  B := alpha*A*B.
*
            IF( UPPER )THEN
               DO 50, J = 1, N
                  DO 40, K = 1, M
                     IF( B( K, J ).NE.ZERO )THEN
                        TEMP = ALPHA*B( K, J )
                        DO 30, I = 1, K - 1
                           B( I, J ) = B( I, J ) + TEMP*A( I, K )
   30                   CONTINUE
                        IF( NOUNIT )
     $                     TEMP = TEMP*A( K, K )
                        B( K, J ) = TEMP
                     END IF
   40             CONTINUE
   50          CONTINUE
            ELSE
               DO 80, J = 1, N
                  DO 70 K = M, 1, -1
                     IF( B( K, J ).NE.ZERO )THEN
                        TEMP      = ALPHA*B( K, J )
                        B( K, J ) = TEMP
                        IF( NOUNIT )
     $                     B( K, J ) = B( K, J )*A( K, K )
                        DO 60, I = K + 1, M
                           B( I, J ) = B( I, J ) + TEMP*A( I, K )
   60                   CONTINUE
                     END IF
   70             CONTINUE
   80          CONTINUE
            END IF
         ELSE
*
*           Form  B := alpha*B*A'.
*
            IF( UPPER )THEN
For faster browsing, not all history is shown. View entire blame