lapack.f 259 KB
Newer Older
François Trigaux's avatar
François Trigaux committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
      DOUBLE PRECISION FUNCTION DLAMCH( CMACH )
*
*  -- LAPACK auxiliary routine (version 3.3.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     Based on LAPACK DLAMCH but with Fortran 95 query functions
*     See: http://www.cs.utk.edu/~luszczek/lapack/lamch.html
*     and  http://www.netlib.org/lapack-dev/lapack-coding/program-style.html#id2537289
*     July 2010
*
*     .. Scalar Arguments ..
      CHARACTER          CMACH
*     ..
*
*  Purpose
*  =======
*
*  DLAMCH determines double precision machine parameters.
*
*  Arguments
*  =========
*
*  CMACH   (input) CHARACTER*1
*          Specifies the value to be returned by DLAMCH:
*          = 'E' or 'e',   DLAMCH := eps
*          = 'S' or 's ,   DLAMCH := sfmin
*          = 'B' or 'b',   DLAMCH := base
*          = 'P' or 'p',   DLAMCH := eps*base
*          = 'N' or 'n',   DLAMCH := t
*          = 'R' or 'r',   DLAMCH := rnd
*          = 'M' or 'm',   DLAMCH := emin
*          = 'U' or 'u',   DLAMCH := rmin
*          = 'L' or 'l',   DLAMCH := emax
*          = 'O' or 'o',   DLAMCH := rmax
*
*          where
*
*          eps   = relative machine precision
*          sfmin = safe minimum, such that 1/sfmin does not overflow
*          base  = base of the machine
*          prec  = eps*base
*          t     = number of (base) digits in the mantissa
*          rnd   = 1.0 when rounding occurs in addition, 0.0 otherwise
*          emin  = minimum exponent before (gradual) underflow
*          rmin  = underflow threshold - base**(emin-1)
*          emax  = largest exponent before overflow
*          rmax  = overflow threshold  - (base**emax)*(1-eps)
*
* =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      DOUBLE PRECISION   RND, EPS, SFMIN, SMALL, RMACH
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DIGITS, EPSILON, HUGE, MAXEXPONENT,
     $                   MINEXPONENT, RADIX, TINY
*     ..
*     .. Executable Statements ..
*
*
*     Assume rounding, not chopping. Always.
*
      RND = ONE
*
      IF( ONE.EQ.RND ) THEN
         EPS = EPSILON(ZERO) * 0.5
      ELSE
         EPS = EPSILON(ZERO)
      END IF
*
      IF( LSAME( CMACH, 'E' ) ) THEN
         RMACH = EPS
      ELSE IF( LSAME( CMACH, 'S' ) ) THEN
         SFMIN = TINY(ZERO)
         SMALL = ONE / HUGE(ZERO)
         IF( SMALL.GE.SFMIN ) THEN
*
*           Use SMALL plus a bit, to avoid the possibility of rounding
*           causing overflow when computing  1/sfmin.
*
            SFMIN = SMALL*( ONE+EPS )
         END IF
         RMACH = SFMIN
      ELSE IF( LSAME( CMACH, 'B' ) ) THEN
         RMACH = RADIX(ZERO)
      ELSE IF( LSAME( CMACH, 'P' ) ) THEN
         RMACH = EPS * RADIX(ZERO)
      ELSE IF( LSAME( CMACH, 'N' ) ) THEN
         RMACH = DIGITS(ZERO)
      ELSE IF( LSAME( CMACH, 'R' ) ) THEN
         RMACH = RND
      ELSE IF( LSAME( CMACH, 'M' ) ) THEN
         RMACH = MINEXPONENT(ZERO)
      ELSE IF( LSAME( CMACH, 'U' ) ) THEN
         RMACH = tiny(zero)
      ELSE IF( LSAME( CMACH, 'L' ) ) THEN
         RMACH = MAXEXPONENT(ZERO)
      ELSE IF( LSAME( CMACH, 'O' ) ) THEN
         RMACH = HUGE(ZERO)
      ELSE
         RMACH = ZERO
      END IF
*
      DLAMCH = RMACH
      RETURN
*
*     End of DLAMCH
*
      END
************************************************************************
*
      DOUBLE PRECISION FUNCTION DLAMC3( A, B )
*
*  -- LAPACK auxiliary routine (version 3.3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2010
*
*     .. Scalar Arguments ..
      DOUBLE PRECISION   A, B
*     ..
*
*  Purpose
*  =======
*
*  DLAMC3  is intended to force  A  and  B  to be stored prior to doing
*  the addition of  A  and  B ,  for use in situations where optimizers
*  might hold one of these in a register.
*
*  Arguments
*  =========
*
*  A       (input) DOUBLE PRECISION
*  B       (input) DOUBLE PRECISION
*          The values A and B.
*
* =====================================================================
*
*     .. Executable Statements ..
*
      DLAMC3 = A + B
*
      RETURN
*
*     End of DLAMC3
*
      END
*
************************************************************************

      DOUBLE PRECISION FUNCTION DLAPY2( X, Y )
*
*  -- LAPACK auxiliary routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2006
*
*     .. Scalar Arguments ..
      DOUBLE PRECISION   X, Y
*     ..
*
*  Purpose
*  =======
*
*  DLAPY2 returns sqrt(x**2+y**2), taking care not to cause unnecessary
*  overflow.
*
*  Arguments
*  =========
*
*  X       (input) DOUBLE PRECISION
*  Y       (input) DOUBLE PRECISION
*          X and Y specify the values x and y.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO
      PARAMETER          ( ZERO = 0.0D0 )
      DOUBLE PRECISION   ONE
      PARAMETER          ( ONE = 1.0D0 )
*     ..
*     .. Local Scalars ..
      DOUBLE PRECISION   W, XABS, YABS, Z
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN, SQRT
*     ..
*     .. Executable Statements ..
*
      XABS = ABS( X )
      YABS = ABS( Y )
      W = MAX( XABS, YABS )
      Z = MIN( XABS, YABS )
      IF( Z.EQ.ZERO ) THEN
         DLAPY2 = W
      ELSE
         DLAPY2 = W*SQRT( ONE+( Z / W )**2 )
      END IF
      RETURN
*
*     End of DLAPY2
*
      END

      SUBROUTINE DLARNV( IDIST, ISEED, N, X )
*
*  -- LAPACK auxiliary routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2006
*
*     .. Scalar Arguments ..
      INTEGER            IDIST, N
*     ..
*     .. Array Arguments ..
      INTEGER            ISEED( 4 )
      DOUBLE PRECISION   X( * )
*     ..
*
*  Purpose
*  =======
*
*  DLARNV returns a vector of n random real numbers from a uniform or
*  normal distribution.
*
*  Arguments
*  =========
*
*  IDIST   (input) INTEGER
*          Specifies the distribution of the random numbers:
*          = 1:  uniform (0,1)
*          = 2:  uniform (-1,1)
*          = 3:  normal (0,1)
*
*  ISEED   (input/output) INTEGER array, dimension (4)
*          On entry, the seed of the random number generator; the array
*          elements must be between 0 and 4095, and ISEED(4) must be
*          odd.
*          On exit, the seed is updated.
*
*  N       (input) INTEGER
*          The number of random numbers to be generated.
*
*  X       (output) DOUBLE PRECISION array, dimension (N)
*          The generated random numbers.
*
*  Further Details
*  ===============
*
*  This routine calls the auxiliary routine DLARUV to generate random
*  real numbers from a uniform (0,1) distribution, in batches of up to
*  128 using vectorisable code. The Box-Muller method is used to
*  transform numbers from a uniform to a normal distribution.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, TWO
      PARAMETER          ( ONE = 1.0D+0, TWO = 2.0D+0 )
      INTEGER            LV
      PARAMETER          ( LV = 128 )
      DOUBLE PRECISION   TWOPI
      PARAMETER          ( TWOPI = 6.2831853071795864769252867663D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, IL, IL2, IV
*     ..
*     .. Local Arrays ..
      DOUBLE PRECISION   U( LV )
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          COS, LOG, MIN, SQRT
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLARUV
*     ..
*     .. Executable Statements ..
*
      DO 40 IV = 1, N, LV / 2
         IL = MIN( LV / 2, N-IV+1 )
         IF( IDIST.EQ.3 ) THEN
            IL2 = 2*IL
         ELSE
            IL2 = IL
         END IF
*
*        Call DLARUV to generate IL2 numbers from a uniform (0,1)
*        distribution (IL2 <= LV)
*
         CALL DLARUV( ISEED, IL2, U )
*
         IF( IDIST.EQ.1 ) THEN
*
*           Copy generated numbers
*
            DO 10 I = 1, IL
               X( IV+I-1 ) = U( I )
   10       CONTINUE
         ELSE IF( IDIST.EQ.2 ) THEN
*
*           Convert generated numbers to uniform (-1,1) distribution
*
            DO 20 I = 1, IL
               X( IV+I-1 ) = TWO*U( I ) - ONE
   20       CONTINUE
         ELSE IF( IDIST.EQ.3 ) THEN
*
*           Convert generated numbers to normal (0,1) distribution
*
            DO 30 I = 1, IL
               X( IV+I-1 ) = SQRT( -TWO*LOG( U( 2*I-1 ) ) )*
     $                       COS( TWOPI*U( 2*I ) )
   30       CONTINUE
         END IF
   40 CONTINUE
      RETURN
*
*     End of DLARNV
*
      END

      SUBROUTINE DLABAD( SMALL, LARGE )
*
*  -- LAPACK auxiliary routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2006
*
*     .. Scalar Arguments ..
      DOUBLE PRECISION   LARGE, SMALL
*     ..
*
*  Purpose
*  =======
*
*  DLABAD takes as input the values computed by DLAMCH for underflow and
*  overflow, and returns the square root of each of these values if the
*  log of LARGE is sufficiently large.  This subroutine is intended to
*  identify machines with a large exponent range, such as the Crays, and
*  redefine the underflow and overflow limits to be the square roots of
*  the values computed by DLAMCH.  This subroutine is needed because
*  DLAMCH does not compensate for poor arithmetic in the upper half of
*  the exponent range, as is found on a Cray.
*
*  Arguments
*  =========
*
*  SMALL   (input/output) DOUBLE PRECISION
*          On entry, the underflow threshold as computed by DLAMCH.
*          On exit, if LOG10(LARGE) is sufficiently large, the square
*          root of SMALL, otherwise unchanged.
*
*  LARGE   (input/output) DOUBLE PRECISION
*          On entry, the overflow threshold as computed by DLAMCH.
*          On exit, if LOG10(LARGE) is sufficiently large, the square
*          root of LARGE, otherwise unchanged.
*
*  =====================================================================
*
*     .. Intrinsic Functions ..
      INTRINSIC          LOG10, SQRT
*     ..
*     .. Executable Statements ..
*
*     If it looks like we're on a Cray, take the square root of
*     SMALL and LARGE to avoid overflow and underflow problems.
*
      IF( LOG10( LARGE ).GT.2000.D0 ) THEN
         SMALL = SQRT( SMALL )
         LARGE = SQRT( LARGE )
      END IF
*
      RETURN
*
*     End of DLABAD
*
      END

      SUBROUTINE DLASCL( TYPE, KL, KU, CFROM, CTO, M, N, A, LDA, INFO )
*
*  -- LAPACK auxiliary routine (version 3.3.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2010
*
*     .. Scalar Arguments ..
      CHARACTER          TYPE
      INTEGER            INFO, KL, KU, LDA, M, N
      DOUBLE PRECISION   CFROM, CTO
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * )
*     ..
*
*  Purpose
*  =======
*
*  DLASCL multiplies the M by N real matrix A by the real scalar
*  CTO/CFROM.  This is done without over/underflow as long as the final
*  result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that
*  A may be full, upper triangular, lower triangular, upper Hessenberg,
*  or banded.
*
*  Arguments
*  =========
*
*  TYPE    (input) CHARACTER*1
*          TYPE indices the storage type of the input matrix.
*          = 'G':  A is a full matrix.
*          = 'L':  A is a lower triangular matrix.
*          = 'U':  A is an upper triangular matrix.
*          = 'H':  A is an upper Hessenberg matrix.
*          = 'B':  A is a symmetric band matrix with lower bandwidth KL
*                  and upper bandwidth KU and with the only the lower
*                  half stored.
*          = 'Q':  A is a symmetric band matrix with lower bandwidth KL
*                  and upper bandwidth KU and with the only the upper
*                  half stored.
*          = 'Z':  A is a band matrix with lower bandwidth KL and upper
*                  bandwidth KU. See DGBTRF for storage details.
*
*  KL      (input) INTEGER
*          The lower bandwidth of A.  Referenced only if TYPE = 'B',
*          'Q' or 'Z'.
*
*  KU      (input) INTEGER
*          The upper bandwidth of A.  Referenced only if TYPE = 'B',
*          'Q' or 'Z'.
*
*  CFROM   (input) DOUBLE PRECISION
*  CTO     (input) DOUBLE PRECISION
*          The matrix A is multiplied by CTO/CFROM. A(I,J) is computed
*          without over/underflow if the final result CTO*A(I,J)/CFROM
*          can be represented without over/underflow.  CFROM must be
*          nonzero.
*
*  M       (input) INTEGER
*          The number of rows of the matrix A.  M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix A.  N >= 0.
*
*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
*          The matrix to be multiplied by CTO/CFROM.  See TYPE for the
*          storage type.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,M).
*
*  INFO    (output) INTEGER
*          0  - successful exit
*          <0 - if INFO = -i, the i-th argument had an illegal value.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            DONE
      INTEGER            I, ITYPE, J, K1, K2, K3, K4
      DOUBLE PRECISION   BIGNUM, CFROM1, CFROMC, CTO1, CTOC, MUL, SMLNUM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME, DISNAN
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           LSAME, DLAMCH, DISNAN
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
*
      IF( LSAME( TYPE, 'G' ) ) THEN
         ITYPE = 0
      ELSE IF( LSAME( TYPE, 'L' ) ) THEN
         ITYPE = 1
      ELSE IF( LSAME( TYPE, 'U' ) ) THEN
         ITYPE = 2
      ELSE IF( LSAME( TYPE, 'H' ) ) THEN
         ITYPE = 3
      ELSE IF( LSAME( TYPE, 'B' ) ) THEN
         ITYPE = 4
      ELSE IF( LSAME( TYPE, 'Q' ) ) THEN
         ITYPE = 5
      ELSE IF( LSAME( TYPE, 'Z' ) ) THEN
         ITYPE = 6
      ELSE
         ITYPE = -1
      END IF
*
      IF( ITYPE.EQ.-1 ) THEN
         INFO = -1
      ELSE IF( CFROM.EQ.ZERO .OR. DISNAN(CFROM) ) THEN
         INFO = -4
      ELSE IF( DISNAN(CTO) ) THEN
         INFO = -5
      ELSE IF( M.LT.0 ) THEN
         INFO = -6
      ELSE IF( N.LT.0 .OR. ( ITYPE.EQ.4 .AND. N.NE.M ) .OR.
     $         ( ITYPE.EQ.5 .AND. N.NE.M ) ) THEN
         INFO = -7
      ELSE IF( ITYPE.LE.3 .AND. LDA.LT.MAX( 1, M ) ) THEN
         INFO = -9
      ELSE IF( ITYPE.GE.4 ) THEN
         IF( KL.LT.0 .OR. KL.GT.MAX( M-1, 0 ) ) THEN
            INFO = -2
         ELSE IF( KU.LT.0 .OR. KU.GT.MAX( N-1, 0 ) .OR.
     $            ( ( ITYPE.EQ.4 .OR. ITYPE.EQ.5 ) .AND. KL.NE.KU ) )
     $             THEN
            INFO = -3
         ELSE IF( ( ITYPE.EQ.4 .AND. LDA.LT.KL+1 ) .OR.
     $            ( ITYPE.EQ.5 .AND. LDA.LT.KU+1 ) .OR.
     $            ( ITYPE.EQ.6 .AND. LDA.LT.2*KL+KU+1 ) ) THEN
            INFO = -9
         END IF
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DLASCL', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 .OR. M.EQ.0 )
     $   RETURN
*
*     Get machine parameters
*
      SMLNUM = DLAMCH( 'S' )
      BIGNUM = ONE / SMLNUM
*
      CFROMC = CFROM
      CTOC = CTO
*
   10 CONTINUE
      CFROM1 = CFROMC*SMLNUM
      IF( CFROM1.EQ.CFROMC ) THEN
!        CFROMC is an inf.  Multiply by a correctly signed zero for
!        finite CTOC, or a NaN if CTOC is infinite.
         MUL = CTOC / CFROMC
         DONE = .TRUE.
         CTO1 = CTOC
      ELSE
         CTO1 = CTOC / BIGNUM
         IF( CTO1.EQ.CTOC ) THEN
!           CTOC is either 0 or an inf.  In both cases, CTOC itself
!           serves as the correct multiplication factor.
            MUL = CTOC
            DONE = .TRUE.
            CFROMC = ONE
         ELSE IF( ABS( CFROM1 ).GT.ABS( CTOC ) .AND. CTOC.NE.ZERO ) THEN
            MUL = SMLNUM
            DONE = .FALSE.
            CFROMC = CFROM1
         ELSE IF( ABS( CTO1 ).GT.ABS( CFROMC ) ) THEN
            MUL = BIGNUM
            DONE = .FALSE.
            CTOC = CTO1
         ELSE
            MUL = CTOC / CFROMC
            DONE = .TRUE.
         END IF
      END IF
*
      IF( ITYPE.EQ.0 ) THEN
*
*        Full matrix
*
         DO 30 J = 1, N
            DO 20 I = 1, M
               A( I, J ) = A( I, J )*MUL
   20       CONTINUE
   30    CONTINUE
*
      ELSE IF( ITYPE.EQ.1 ) THEN
*
*        Lower triangular matrix
*
         DO 50 J = 1, N
            DO 40 I = J, M
               A( I, J ) = A( I, J )*MUL
   40       CONTINUE
   50    CONTINUE
*
      ELSE IF( ITYPE.EQ.2 ) THEN
*
*        Upper triangular matrix
*
         DO 70 J = 1, N
            DO 60 I = 1, MIN( J, M )
               A( I, J ) = A( I, J )*MUL
   60       CONTINUE
   70    CONTINUE
*
      ELSE IF( ITYPE.EQ.3 ) THEN
*
*        Upper Hessenberg matrix
*
         DO 90 J = 1, N
            DO 80 I = 1, MIN( J+1, M )
               A( I, J ) = A( I, J )*MUL
   80       CONTINUE
   90    CONTINUE
*
      ELSE IF( ITYPE.EQ.4 ) THEN
*
*        Lower half of a symmetric band matrix
*
         K3 = KL + 1
         K4 = N + 1
         DO 110 J = 1, N
            DO 100 I = 1, MIN( K3, K4-J )
               A( I, J ) = A( I, J )*MUL
  100       CONTINUE
  110    CONTINUE
*
      ELSE IF( ITYPE.EQ.5 ) THEN
*
*        Upper half of a symmetric band matrix
*
         K1 = KU + 2
         K3 = KU + 1
         DO 130 J = 1, N
            DO 120 I = MAX( K1-J, 1 ), K3
               A( I, J ) = A( I, J )*MUL
  120       CONTINUE
  130    CONTINUE
*
      ELSE IF( ITYPE.EQ.6 ) THEN
*
*        Band matrix
*
         K1 = KL + KU + 2
         K2 = KL + 1
         K3 = 2*KL + KU + 1
         K4 = KL + KU + 1 + M
         DO 150 J = 1, N
            DO 140 I = MAX( K1-J, K2 ), MIN( K3, K4-J )
               A( I, J ) = A( I, J )*MUL
  140       CONTINUE
  150    CONTINUE
*
      END IF
*
      IF( .NOT.DONE )
     $   GO TO 10
*
      RETURN
*
*     End of DLASCL
*
      END

      DOUBLE PRECISION FUNCTION DLANHS( NORM, N, A, LDA, WORK )
*
*  -- LAPACK auxiliary routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          NORM
      INTEGER            LDA, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  DLANHS  returns the value of the one norm,  or the Frobenius norm, or
*  the  infinity norm,  or the  element of  largest absolute value  of a
*  Hessenberg matrix A.
*
*  Description
*  ===========
*
*  DLANHS returns the value
*
*     DLANHS = ( max(abs(A(i,j))), NORM = 'M' or 'm'
*              (
*              ( norm1(A),         NORM = '1', 'O' or 'o'
*              (
*              ( normI(A),         NORM = 'I' or 'i'
*              (
*              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
*
*  where  norm1  denotes the  one norm of a matrix (maximum column sum),
*  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
*  normF  denotes the  Frobenius norm of a matrix (square root of sum of
*  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
*
*  Arguments
*  =========
*
*  NORM    (input) CHARACTER*1
*          Specifies the value to be returned in DLANHS as described
*          above.
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.  When N = 0, DLANHS is
*          set to zero.
*
*  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
*          The n by n upper Hessenberg matrix A; the part of A below the
*          first sub-diagonal is not referenced.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(N,1).
*
*  WORK    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
*          where LWORK >= N when NORM = 'I'; otherwise, WORK is not
*          referenced.
*
* =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J
      DOUBLE PRECISION   SCALE, SUM, VALUE
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLASSQ
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN, SQRT
*     ..
*     .. Executable Statements ..
*
      IF( N.EQ.0 ) THEN
         VALUE = ZERO
      ELSE IF( LSAME( NORM, 'M' ) ) THEN
*
*        Find max(abs(A(i,j))).
*
         VALUE = ZERO
         DO 20 J = 1, N
            DO 10 I = 1, MIN( N, J+1 )
               VALUE = MAX( VALUE, ABS( A( I, J ) ) )
   10       CONTINUE
   20    CONTINUE
      ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
*
*        Find norm1(A).
*
         VALUE = ZERO
         DO 40 J = 1, N
            SUM = ZERO
            DO 30 I = 1, MIN( N, J+1 )
               SUM = SUM + ABS( A( I, J ) )
   30       CONTINUE
            VALUE = MAX( VALUE, SUM )
   40    CONTINUE
      ELSE IF( LSAME( NORM, 'I' ) ) THEN
*
*        Find normI(A).
*
         DO 50 I = 1, N
            WORK( I ) = ZERO
   50    CONTINUE
         DO 70 J = 1, N
            DO 60 I = 1, MIN( N, J+1 )
               WORK( I ) = WORK( I ) + ABS( A( I, J ) )
   60       CONTINUE
   70    CONTINUE
         VALUE = ZERO
         DO 80 I = 1, N
            VALUE = MAX( VALUE, WORK( I ) )
   80    CONTINUE
      ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
*
*        Find normF(A).
*
         SCALE = ZERO
         SUM = ONE
         DO 90 J = 1, N
            CALL DLASSQ( MIN( N, J+1 ), A( 1, J ), 1, SCALE, SUM )
   90    CONTINUE
         VALUE = SCALE*SQRT( SUM )
      END IF
*
      DLANHS = VALUE
      RETURN
*
*     End of DLANHS
*
      END


      SUBROUTINE DLACPY( UPLO, M, N, A, LDA, B, LDB )
*
*  -- LAPACK auxiliary routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            LDA, LDB, M, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * )
*     ..
*
*  Purpose
*  =======
*
*  DLACPY copies all or part of a two-dimensional matrix A to another
*  matrix B.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          Specifies the part of the matrix A to be copied to B.
*          = 'U':      Upper triangular part
*          = 'L':      Lower triangular part
*          Otherwise:  All of the matrix A
*
*  M       (input) INTEGER
*          The number of rows of the matrix A.  M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix A.  N >= 0.
*
*  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
*          The m by n matrix A.  If UPLO = 'U', only the upper triangle
*          or trapezoid is accessed; if UPLO = 'L', only the lower
*          triangle or trapezoid is accessed.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,M).
*
*  B       (output) DOUBLE PRECISION array, dimension (LDB,N)
*          On exit, B = A in the locations specified by UPLO.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B.  LDB >= max(1,M).
*
*  =====================================================================
*
*     .. Local Scalars ..
      INTEGER            I, J
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MIN
*     ..
*     .. Executable Statements ..
*
      IF( LSAME( UPLO, 'U' ) ) THEN
         DO 20 J = 1, N
            DO 10 I = 1, MIN( J, M )
               B( I, J ) = A( I, J )
   10       CONTINUE
   20    CONTINUE
      ELSE IF( LSAME( UPLO, 'L' ) ) THEN
         DO 40 J = 1, N
            DO 30 I = J, M
               B( I, J ) = A( I, J )
   30       CONTINUE
   40    CONTINUE
      ELSE
         DO 60 J = 1, N
            DO 50 I = 1, M
               B( I, J ) = A( I, J )
   50       CONTINUE
   60    CONTINUE
      END IF
      RETURN
*
*     End of DLACPY
*
      END

      SUBROUTINE DTREVC( SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
     $                   LDVR, MM, M, WORK, INFO )
*
*  -- LAPACK routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          HOWMNY, SIDE
      INTEGER            INFO, LDT, LDVL, LDVR, M, MM, N
*     ..
*     .. Array Arguments ..
      LOGICAL            SELECT( * )
      DOUBLE PRECISION   T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
     $                   WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  DTREVC computes some or all of the right and/or left eigenvectors of
*  a real upper quasi-triangular matrix T.
*  Matrices of this type are produced by the Schur factorization of
*  a real general matrix:  A = Q*T*Q**T, as computed by DHSEQR.
*  
*  The right eigenvector x and the left eigenvector y of T corresponding
*  to an eigenvalue w are defined by:
*  
*     T*x = w*x,     (y**H)*T = w*(y**H)
*  
*  where y**H denotes the conjugate transpose of y.
*  The eigenvalues are not input to this routine, but are read directly
*  from the diagonal blocks of T.
*  
*  This routine returns the matrices X and/or Y of right and left
*  eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an
*  input matrix.  If Q is the orthogonal factor that reduces a matrix
*  A to Schur form T, then Q*X and Q*Y are the matrices of right and
*  left eigenvectors of A.
*
*  Arguments
*  =========
*
*  SIDE    (input) CHARACTER*1
*          = 'R':  compute right eigenvectors only;
*          = 'L':  compute left eigenvectors only;
*          = 'B':  compute both right and left eigenvectors.
*
*  HOWMNY  (input) CHARACTER*1
*          = 'A':  compute all right and/or left eigenvectors;
*          = 'B':  compute all right and/or left eigenvectors,
*                  backtransformed by the matrices in VR and/or VL;
*          = 'S':  compute selected right and/or left eigenvectors,
*                  as indicated by the logical array SELECT.
*
*  SELECT  (input/output) LOGICAL array, dimension (N)
*          If HOWMNY = 'S', SELECT specifies the eigenvectors to be
*          computed.
*          If w(j) is a real eigenvalue, the corresponding real
*          eigenvector is computed if SELECT(j) is .TRUE..
*          If w(j) and w(j+1) are the real and imaginary parts of a
*          complex eigenvalue, the corresponding complex eigenvector is
*          computed if either SELECT(j) or SELECT(j+1) is .TRUE., and
*          on exit SELECT(j) is set to .TRUE. and SELECT(j+1) is set to
*          .FALSE..
*          Not referenced if HOWMNY = 'A' or 'B'.
*
*  N       (input) INTEGER
*          The order of the matrix T. N >= 0.
*
*  T       (input) DOUBLE PRECISION array, dimension (LDT,N)
*          The upper quasi-triangular matrix T in Schur canonical form.
*
*  LDT     (input) INTEGER
*          The leading dimension of the array T. LDT >= max(1,N).
*
*  VL      (input/output) DOUBLE PRECISION array, dimension (LDVL,MM)
*          On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
*          contain an N-by-N matrix Q (usually the orthogonal matrix Q
*          of Schur vectors returned by DHSEQR).
*          On exit, if SIDE = 'L' or 'B', VL contains:
*          if HOWMNY = 'A', the matrix Y of left eigenvectors of T;
*          if HOWMNY = 'B', the matrix Q*Y;
*          if HOWMNY = 'S', the left eigenvectors of T specified by
*                           SELECT, stored consecutively in the columns
*                           of VL, in the same order as their
*                           eigenvalues.
*          A complex eigenvector corresponding to a complex eigenvalue
*          is stored in two consecutive columns, the first holding the
*          real part, and the second the imaginary part.
*          Not referenced if SIDE = 'R'.
*
*  LDVL    (input) INTEGER
*          The leading dimension of the array VL.  LDVL >= 1, and if
*          SIDE = 'L' or 'B', LDVL >= N.
For faster browsing, not all history is shown. View entire blame