Skip to content
GitLab
Menu
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Jonathan Lambrechts
seamsh
Commits
b2350837
Commit
b2350837
authored
Oct 16, 2021
by
Jonathan Lambrechts
Browse files
no std::
parent
02f5c70c
Changes
4
Hide whitespace changes
Inline
Side-by-side
seamshlib/CMakeLists.txt
View file @
b2350837
...
...
@@ -23,5 +23,6 @@ project(seamsh C CXX)
add_library
(
seamsh SHARED
seamsh.c
polymesh.cc
sort.c
robustPredicates.cpp
)
seamshlib/polymesh.cc
View file @
b2350837
...
...
@@ -5,10 +5,9 @@
#include
"vector.h"
#include
<algorithm>
#include
<stack>
#include
<stdio.h>
#include
<cmath>
#include
<limits>
#include
<cfloat>
#include
<cstdio>
#include
"robustPredicates.h"
typedef
struct
HalfEdgeStruct
HalfEdge
;
...
...
@@ -388,7 +387,7 @@ public:
inline
int
split_triangle
(
int
index
,
double
x
,
double
y
,
Face
*
f
,
int
(
*
doSwap
)(
HalfEdge
*
,
void
*
)
=
NULL
,
void
*
data
=
NULL
,
std
::
vector
<
HalfEdge
*
>
*
_t
=
NULL
)
HalfEdge
*
*
*
_t
=
NULL
)
{
Vertex
*
v
=
vertex_new
(
x
,
y
,
-
1
);
// one more vertex
*
vector_push
(
&
vertices
)
=
v
;
...
...
@@ -436,15 +435,15 @@ public:
createFace
(
f2
,
v2
,
v0
,
v
,
he2
,
he0v
,
hev2
);
if
(
doSwap
)
{
std
::
stack
<
HalfEdge
*
>
_stack
;
_stack
.
push
(
he0
)
;
_stack
.
push
(
he1
)
;
_stack
.
push
(
he2
)
;
std
::
vector
<
HalfEdge
*
>
_
touched
;
while
(
!
_stack
.
empty
()
)
{
HalfEdge
*
he
=
_stack
.
top
()
;
_touched
.
push_back
(
he
);
_stack
.
pop
()
;
HalfEdge
*
*
_stack
=
NULL
;
*
vector_push
(
&
_stack
)
=
he0
;
*
vector_push
(
&
_stack
)
=
he1
;
*
vector_push
(
&
_stack
)
=
he2
;
HalfEdge
*
*
touched
=
NULL
;
while
(
vector_size
(
_stack
)
!=
0
)
{
HalfEdge
*
he
=
_stack
[
vector_size
(
_stack
)
-
1
]
;
vector_pop
(
_stack
);
*
vector_push
(
&
touched
)
=
he
;
// printf("do we swap %g %g --> %g %g ?\n",
// he->v->position.x(),he->v->position.y(),
// he->next->v->position.x(),he->next->v->position.y());
...
...
@@ -458,39 +457,49 @@ public:
if
(
H
[
k
]
==
NULL
)
continue
;
HalfEdge
*
heb
=
H
[
k
]
->
next
;
HalfEdge
*
hebo
=
heb
->
opposite
;
if
(
std
::
find
(
_touched
.
begin
(),
_touched
.
end
(),
heb
)
==
_touched
.
end
()
&&
std
::
find
(
_touched
.
begin
(),
_touched
.
end
(),
hebo
)
==
_touched
.
end
())
{
_stack
.
push
(
heb
);
}
HalfEdge
*
hec
=
heb
->
next
;
HalfEdge
*
heco
=
hec
->
opposite
;
if
(
std
::
find
(
_touched
.
begin
(),
_touched
.
end
(),
hec
)
==
_touched
.
end
()
&&
std
::
find
(
_touched
.
begin
(),
_touched
.
end
(),
heco
)
==
_touched
.
end
())
{
_stack
.
push
(
hec
);
int
found_b_bo
=
0
;
int
found_c_co
=
0
;
for
(
int
i
=
0
;
i
<
vector_size
(
touched
);
++
i
)
{
if
(
touched
[
i
]
==
heb
||
touched
[
i
]
==
hebo
)
found_b_bo
=
1
;
if
(
touched
[
i
]
==
hec
||
touched
[
i
]
==
heco
)
found_c_co
=
1
;
}
if
(
found_b_bo
==
0
)
{
*
vector_push
(
&
_stack
)
=
heb
;
}
if
(
found_c_co
==
0
)
{
*
vector_push
(
&
_stack
)
=
hec
;
}
}
}
}
if
(
_t
)
*
_t
=
_touched
;
if
(
_t
)
*
_t
=
touched
;
else
vector_free
(
touched
);
vector_free
(
_stack
);
}
return
0
;
}
};
inline
Vertex
*
ptrmin
(
Vertex
*
p1
,
Vertex
*
p2
)
{
return
p1
<
p2
?
p1
:
p2
;
}
inline
Vertex
*
ptrmax
(
Vertex
*
p1
,
Vertex
*
p2
)
{
return
p1
>
p2
?
p1
:
p2
;
}
struct
HalfEdgePtrLessThan
{
bool
operator
()(
HalfEdge
*
l1
,
HalfEdge
*
l2
)
const
{
Vertex
*
l10
=
std
::
min
(
l1
->
v
,
l1
->
next
->
v
);
Vertex
*
l11
=
std
::
max
(
l1
->
v
,
l1
->
next
->
v
);
Vertex
*
l20
=
std
::
min
(
l2
->
v
,
l2
->
next
->
v
);
Vertex
*
l21
=
std
::
max
(
l2
->
v
,
l2
->
next
->
v
);
Vertex
*
l10
=
ptr
min
(
l1
->
v
,
l1
->
next
->
v
);
Vertex
*
l11
=
ptr
max
(
l1
->
v
,
l1
->
next
->
v
);
Vertex
*
l20
=
ptr
min
(
l2
->
v
,
l2
->
next
->
v
);
Vertex
*
l21
=
ptr
max
(
l2
->
v
,
l2
->
next
->
v
);
if
(
l10
<
l20
)
return
true
;
if
(
l10
>
l20
)
return
false
;
if
(
l11
>
l21
)
return
true
;
...
...
@@ -501,10 +510,10 @@ struct HalfEdgePtrLessThan {
struct
HalfEdgePtrEqual
{
bool
operator
()(
HalfEdge
*
l1
,
HalfEdge
*
l2
)
const
{
Vertex
*
l10
=
std
::
min
(
l1
->
v
,
l1
->
next
->
v
);
Vertex
*
l11
=
std
::
max
(
l1
->
v
,
l1
->
next
->
v
);
Vertex
*
l20
=
std
::
min
(
l2
->
v
,
l2
->
next
->
v
);
Vertex
*
l21
=
std
::
max
(
l2
->
v
,
l2
->
next
->
v
);
Vertex
*
l10
=
ptr
min
(
l1
->
v
,
l1
->
next
->
v
);
Vertex
*
l11
=
ptr
max
(
l1
->
v
,
l1
->
next
->
v
);
Vertex
*
l20
=
ptr
min
(
l2
->
v
,
l2
->
next
->
v
);
Vertex
*
l21
=
ptr
max
(
l2
->
v
,
l2
->
next
->
v
);
if
(
l10
==
l20
&&
l11
==
l21
)
return
true
;
return
false
;
}
...
...
@@ -650,12 +659,12 @@ void plymesh_delete(PolyMesh *pm) {
}
static
void
get_bounding_box
(
int
n
,
double
*
x
,
double
bbmin
[
2
],
double
bbmax
[
2
])
{
bbmin
[
0
]
=
bbmin
[
1
]
=
std
::
numeric_limits
<
double
>::
max
()
;
bbmax
[
0
]
=
bbmax
[
1
]
=
-
std
::
numeric_limits
<
double
>::
max
()
;
bbmin
[
0
]
=
bbmin
[
1
]
=
DBL_MAX
;
bbmax
[
0
]
=
bbmax
[
1
]
=
-
DBL_MAX
;
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
for
(
int
j
=
0
;
j
<
2
;
++
j
)
{
bbmin
[
j
]
=
std
::
min
(
x
[
i
*
2
+
j
],
bbmin
[
j
]);
bbmax
[
j
]
=
std
::
max
(
x
[
i
*
2
+
j
],
bbmax
[
j
]);
bbmin
[
j
]
=
f
min
(
x
[
i
*
2
+
j
],
bbmin
[
j
]);
bbmax
[
j
]
=
f
max
(
x
[
i
*
2
+
j
],
bbmax
[
j
]);
}
}
for
(
int
j
=
0
;
j
<
3
;
++
j
)
{
...
...
@@ -674,9 +683,17 @@ PolyMesh *polymesh_new(double xmin[2], double xmax[2]) {
}
int
size_t_cmp
(
const
void
*
p0
,
const
void
*
p1
,
void
*
pdata
)
{
size_t
*
HC
=
(
size_t
*
)
pdata
;
size_t
i0
=
*
(
size_t
*
)
p0
;
size_t
i1
=
*
(
size_t
*
)
p1
;
return
HC
[
i0
]
>
HC
[
i1
]
?
1
:
-
1
;
}
void
polymesh_add_points
(
PolyMesh
*
pm
,
int
n
,
double
*
x
,
int
*
tags
)
{
std
::
vector
<
size_t
>
HC
(
n
),
IND
(
n
);
size_t
*
HC
=
(
size_t
*
)
malloc
(
sizeof
(
size_t
)
*
n
);
size_t
*
IND
=
(
size_t
*
)
malloc
(
sizeof
(
size_t
)
*
n
);
Face
*
f
=
pm
->
faces
[
0
];
double
bbmin
[
2
],
bbmax
[
2
];
get_bounding_box
(
n
,
x
,
bbmin
,
bbmax
);
...
...
@@ -687,13 +704,13 @@ void polymesh_add_points(PolyMesh *pm, int n, double *x, int *tags)
bbmax
[
1
]
-
bbcenter
[
1
]);
IND
[
i
]
=
i
;
}
std
::
sort
(
IND
.
begin
(),
IND
.
end
(),
[
&
](
size_t
i
,
size_t
j
)
{
return
HC
[
i
]
<
HC
[
j
];
});
quicksort
(
IND
,
n
,
sizeof
(
size_t
),
size_t_cmp
,
HC
);
for
(
size_t
i
=
0
;
i
<
n
;
i
++
)
{
size_t
I
=
IND
[
i
];
f
=
Walk
(
f
,
x
[
I
*
2
],
x
[
I
*
2
+
1
]);
pm
->
split_triangle
(
i
,
x
[
I
*
2
],
x
[
I
*
2
+
1
],
f
,
delaunayEdgeCriterionPlaneIsotropic
,
nullptr
);
pm
->
split_triangle
(
i
,
x
[
I
*
2
],
x
[
I
*
2
+
1
],
f
,
delaunayEdgeCriterionPlaneIsotropic
,
NULL
);
pm
->
vertices
[
vector_size
(
pm
->
vertices
)
-
1
]
->
data
=
tags
[
I
];
}
free
(
HC
);
free
(
IND
);
}
seamshlib/sort.c
0 → 100644
View file @
b2350837
/* Copyright (C) 1991-2019 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Written by Douglas C. Schmidt (schmidt@ics.uci.edu).
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
/* If you consider tuning this algorithm, you should consult first:
Engineering a sort function; Jon Bentley and M. Douglas McIlroy;
Software - Practice and Experience; Vol. 23 (11), 1249-1265, 1993. */
#include
<alloca.h>
#include
<limits.h>
#include
<stdlib.h>
#include
<string.h>
/* Byte-wise swap two items of size SIZE. */
#define SWAP(a, b, size) \
do \
{ \
size_t __size = (size); \
char *__a = (a), *__b = (b); \
do \
{ \
char __tmp = *__a; \
*__a++ = *__b; \
*__b++ = __tmp; \
} while (--__size > 0); \
} while (0)
/* Discontinue quicksort algorithm when partition gets below this size.
This particular magic number was chosen to work best on a Sun 4/260. */
#define MAX_THRESH 4
/* Stack node declarations used to store unfulfilled partition obligations. */
typedef
struct
{
char
*
lo
;
char
*
hi
;
}
stack_node
;
/* The next 4 #defines implement a very fast in-line stack abstraction. */
/* The stack needs log (total_elements) entries (we could even subtract
log(MAX_THRESH)). Since total_elements has type size_t, we get as
upper bound for log (total_elements):
bits per byte (CHAR_BIT) * sizeof(size_t). */
#define STACK_SIZE (CHAR_BIT * sizeof (size_t))
#define PUSH(low, high) ((void) ((top->lo = (low)), (top->hi = (high)), ++top))
#define POP(low, high) ((void) (--top, (low = top->lo), (high = top->hi)))
#define STACK_NOT_EMPTY (stack < top)
/* Order size using quicksort. This implementation incorporates
four optimizations discussed in Sedgewick:
1. Non-recursive, using an explicit stack of pointer that store the
next array partition to sort. To save time, this maximum amount
of space required to store an array of SIZE_MAX is allocated on the
stack. Assuming a 32-bit (64 bit) integer for size_t, this needs
only 32 * sizeof(stack_node) == 256 bytes (for 64 bit: 1024 bytes).
Pretty cheap, actually.
2. Chose the pivot element using a median-of-three decision tree.
This reduces the probability of selecting a bad pivot value and
eliminates certain extraneous comparisons.
3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving
insertion sort to order the MAX_THRESH items within each partition.
This is a big win, since insertion sort is faster for small, mostly
sorted array segments.
4. The larger of the two sub-partitions is always pushed onto the
stack first, with the algorithm then concentrating on the
smaller partition. This *guarantees* no more than log (total_elems)
stack size is needed (actually O(1) in this case)! */
void
quicksort
(
void
*
const
pbase
,
size_t
total_elems
,
size_t
size
,
int
(
*
cmp
)(
const
void
*
,
const
void
*
,
void
*
),
void
*
arg
)
{
char
*
base_ptr
=
(
char
*
)
pbase
;
const
size_t
max_thresh
=
MAX_THRESH
*
size
;
if
(
total_elems
==
0
)
/* Avoid lossage with unsigned arithmetic below. */
return
;
if
(
total_elems
>
MAX_THRESH
)
{
char
*
lo
=
base_ptr
;
char
*
hi
=
&
lo
[
size
*
(
total_elems
-
1
)];
stack_node
stack
[
STACK_SIZE
];
stack_node
*
top
=
stack
;
PUSH
(
NULL
,
NULL
);
while
(
STACK_NOT_EMPTY
)
{
char
*
left_ptr
;
char
*
right_ptr
;
/* Select median value from among LO, MID, and HI. Rearrange
LO and HI so the three values are sorted. This lowers the
probability of picking a pathological pivot value and
skips a comparison for both the LEFT_PTR and RIGHT_PTR in
the while loops. */
char
*
mid
=
lo
+
size
*
((
hi
-
lo
)
/
size
>>
1
);
if
((
*
cmp
)
((
void
*
)
mid
,
(
void
*
)
lo
,
arg
)
<
0
)
SWAP
(
mid
,
lo
,
size
);
if
((
*
cmp
)
((
void
*
)
hi
,
(
void
*
)
mid
,
arg
)
<
0
)
SWAP
(
mid
,
hi
,
size
);
else
goto
jump_over
;
if
((
*
cmp
)
((
void
*
)
mid
,
(
void
*
)
lo
,
arg
)
<
0
)
SWAP
(
mid
,
lo
,
size
);
jump_over:
;
left_ptr
=
lo
+
size
;
right_ptr
=
hi
-
size
;
/* Here's the famous ``collapse the walls'' section of quicksort.
Gotta like those tight inner loops! They are the main reason
that this algorithm runs much faster than others. */
do
{
while
((
*
cmp
)
((
void
*
)
left_ptr
,
(
void
*
)
mid
,
arg
)
<
0
)
left_ptr
+=
size
;
while
((
*
cmp
)
((
void
*
)
mid
,
(
void
*
)
right_ptr
,
arg
)
<
0
)
right_ptr
-=
size
;
if
(
left_ptr
<
right_ptr
)
{
SWAP
(
left_ptr
,
right_ptr
,
size
);
if
(
mid
==
left_ptr
)
mid
=
right_ptr
;
else
if
(
mid
==
right_ptr
)
mid
=
left_ptr
;
left_ptr
+=
size
;
right_ptr
-=
size
;
}
else
if
(
left_ptr
==
right_ptr
)
{
left_ptr
+=
size
;
right_ptr
-=
size
;
break
;
}
}
while
(
left_ptr
<=
right_ptr
);
/* Set up pointers for next iteration. First determine whether
left and right partitions are below the threshold size. If so,
ignore one or both. Otherwise, push the larger partition's
bounds on the stack and continue sorting the smaller one. */
if
((
size_t
)
(
right_ptr
-
lo
)
<=
max_thresh
)
{
if
((
size_t
)
(
hi
-
left_ptr
)
<=
max_thresh
)
/* Ignore both small partitions. */
POP
(
lo
,
hi
);
else
/* Ignore small left partition. */
lo
=
left_ptr
;
}
else
if
((
size_t
)
(
hi
-
left_ptr
)
<=
max_thresh
)
/* Ignore small right partition. */
hi
=
right_ptr
;
else
if
((
right_ptr
-
lo
)
>
(
hi
-
left_ptr
))
{
/* Push larger left partition indices. */
PUSH
(
lo
,
right_ptr
);
lo
=
left_ptr
;
}
else
{
/* Push larger right partition indices. */
PUSH
(
left_ptr
,
hi
);
hi
=
right_ptr
;
}
}
}
/* Once the BASE_PTR array is partially sorted by quicksort the rest
is completely sorted using insertion sort, since this is efficient
for partitions below MAX_THRESH size. BASE_PTR points to the beginning
of the array to sort, and END_PTR points at the very last element in
the array (*not* one beyond it!). */
#define min(x, y) ((x) < (y) ? (x) : (y))
{
char
*
const
end_ptr
=
&
base_ptr
[
size
*
(
total_elems
-
1
)];
char
*
tmp_ptr
=
base_ptr
;
char
*
thresh
=
min
(
end_ptr
,
base_ptr
+
max_thresh
);
char
*
run_ptr
;
/* Find smallest element in first threshold and place it at the
array's beginning. This is the smallest array element,
and the operation speeds up insertion sort's inner loop. */
for
(
run_ptr
=
tmp_ptr
+
size
;
run_ptr
<=
thresh
;
run_ptr
+=
size
)
if
((
*
cmp
)
((
void
*
)
run_ptr
,
(
void
*
)
tmp_ptr
,
arg
)
<
0
)
tmp_ptr
=
run_ptr
;
if
(
tmp_ptr
!=
base_ptr
)
SWAP
(
tmp_ptr
,
base_ptr
,
size
);
/* Insertion sort, running from left-hand-side up to right-hand-side. */
run_ptr
=
base_ptr
+
size
;
while
((
run_ptr
+=
size
)
<=
end_ptr
)
{
tmp_ptr
=
run_ptr
-
size
;
while
((
*
cmp
)
((
void
*
)
run_ptr
,
(
void
*
)
tmp_ptr
,
arg
)
<
0
)
tmp_ptr
-=
size
;
tmp_ptr
+=
size
;
if
(
tmp_ptr
!=
run_ptr
)
{
char
*
trav
;
trav
=
run_ptr
+
size
;
while
(
--
trav
>=
run_ptr
)
{
char
c
=
*
trav
;
char
*
hi
,
*
lo
;
for
(
hi
=
lo
=
trav
;
(
lo
-=
size
)
>=
tmp_ptr
;
hi
=
lo
)
*
hi
=
*
lo
;
*
hi
=
c
;
}
}
}
}
}
seamshlib/vector.h
0 → 100644
View file @
b2350837
/*
* MigFlow - Copyright (C) <2010-2020>
* <Universite catholique de Louvain (UCL), Belgium
* Universite de Montpellier, France>
*
* List of the contributors to the development of MigFlow: see AUTHORS file.
* Description and complete License: see LICENSE file.
*
* This program (MigFlow) is free software:
* you can redistribute it and/or modify it under the terms of the GNU Lesser General
* Public License as published by the Free Software Foundation, either version
* 3 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program (see COPYING and COPYING.LESSER files). If not,
* see <http://www.gnu.org/licenses/>.
*/
#ifndef _VECTOR_H_
#define _VECTOR_H_
#include
<string.h>
#include
<stdlib.h>
static
size_t
_vectorSize
(
void
*
m
)
{
return
m
==
NULL
?
0
:
(
*
((
size_t
*
)
m
-
1
));
}
static
void
_vectorFree
(
void
**
m
)
{
if
(
*
m
!=
NULL
)
free
(((
size_t
*
)
*
m
)
-
2
);
*
m
=
NULL
;
}
static
void
*
_vectorPush
(
void
**
m
,
size_t
s
)
{
if
(
s
==
0
)
return
*
m
;
if
(
*
m
==
NULL
)
{
size_t
*
n
=
(
size_t
*
)
malloc
(
s
*
2
+
2
*
sizeof
(
size_t
));
n
[
0
]
=
2
*
s
;
n
[
1
]
=
s
;
*
m
=
n
+
2
;
return
*
m
;
}
size_t
*
n
=
(
*
(
size_t
**
)
m
)
-
2
;
n
[
1
]
+=
s
;
if
(
n
[
0
]
<
n
[
1
])
{
n
[
0
]
*=
2
;
n
=
(
size_t
*
)
realloc
(
n
,
n
[
0
]
+
2
*
sizeof
(
size_t
));
*
m
=
n
+
2
;
}
return
((
char
*
)
*
m
)
+
n
[
1
]
-
s
;
}
static
void
*
_vectorInsert
(
void
**
m
,
size_t
p
,
size_t
s
)
{
_vectorPush
(
m
,
s
);
memmove
(((
char
*
)
*
m
)
+
p
+
s
,
((
char
*
)
*
m
)
+
p
,
_vectorSize
(
*
m
)
-
s
-
p
);
return
((
char
*
)
*
m
)
+
p
;
}
static
void
*
_vectorDup
(
void
*
m
)
{
if
(
m
==
NULL
)
return
NULL
;
size_t
*
n
=
((
size_t
*
)
m
-
2
);
size_t
N
=
n
[
1
];
size_t
*
a
=
(
size_t
*
)
malloc
(
sizeof
(
size_t
)
*
2
+
N
);
memcpy
(
a
,
n
,
sizeof
(
size_t
)
*
2
+
N
);
a
[
0
]
=
a
[
1
]
=
N
;
return
a
+
2
;
}
static
void
vectorClear
(
void
*
m
)
{
if
(
m
!=
NULL
)
*
(((
size_t
*
)
m
)
-
1
)
=
0
;
}
static
void
_vectorPop
(
void
*
m
,
size_t
s
)
{
if
(
m
!=
NULL
)
{
*
((
size_t
*
)
m
-
1
)
-=
s
;
}
}
static
void
_vectorRemoveFlag
(
void
*
m
,
const
int
*
flag
,
int
size
)
{
size_t
r
=
0
;
for
(
size_t
i
=
0
;
i
<
_vectorSize
(
m
)
/
size
;
++
i
)
{
if
(
flag
[
i
])
{
if
(
r
!=
0
)
{
memcpy
(((
char
*
)
m
)
+
size
*
(
i
-
r
),((
char
*
)
m
)
+
size
*
i
,
size
);
}
}
else
{
r
+=
1
;
}
}
_vectorPop
(
m
,
size
*
r
);
}
extern
"C"
{
void
quicksort
(
void
*
const
pbase
,
size_t
total_elems
,
size_t
size
,
int
(
*
cmp
)(
const
void
*
,
const
void
*
,
void
*
),
void
*
arg
);
}
#define vector_remove_flag(v,f,repeat) _vectorRemoveFlag((void*)v,f,repeat*sizeof(*v))
#define vector_size(v) (_vectorSize((void*)v)/sizeof(*v))
#define vector_push(v) ((__typeof__(*v))_vectorPush((void**)v, sizeof(**v)))
#define vector_push_n(v, x) ((__typeof__(*v))_vectorPush((void**)v, sizeof(**v) * (x)))
#define vector_insert(v, p) ((__typeof__(*v))_vectorInsert((void**)v, p * (sizeof(**v)), sizeof(**v)))
#define vector_pop(v) _vectorPop((void*)v, sizeof(*v))
#define vector_pop_n(v, x) _vectorPop((void*)v, sizeof(*v) * (x)))
#define vector_free(m) _vectorFree((void**)&m)
#define vector_dup(m) ((__typeof__(m))_vectorDup(m))
#endif
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment